Iv. Javakhishvili Tbilisi State University

FACULTY OF EXACT AND NATURAL SCIENCES

George Nadareishvili

MASTER D E G R E E T H E S I S

M A T H E M A T I C S

On Projective Semimodules

Scientific Supervisor: Prof. Alex Patchkoria

TBILISI - 2011

1 Introduction

Numerous investigations on freeness of projective modules over rings have led to many remarkable results. It suffices to mention the Quilen-Suslin theorem confirming Serre's famous conjecture on coincidence of the classes of free and projective modules over polynomial rings with coefficients in a field. At the same time there are only few results which deal with the problem on freeness of projective semimodules over semirings. In [7] O. Sokratova proved that for any nonzero commutative, additively idempotent semiring S, free S-semimodules constitute a proper subclass of the class of projective S-semimodules. Later Y.Katsov [4] extended this result to additively regular semirings with non-empty sets of characters. As a consequence of the latter, he showed that the classes of projective and free semimodules over the polynomial semiring $R[x_1, x_2, \ldots, x_n]$ over an additively regular division semiring R coincide if and only if R is a field. In Section 3 of this work the proofs of the Katsov's results are presented.

Next, It is known that all projective semimodules over the semiring N of nonnegative integers, i.e., all projective abelian monoids are free. Recently, in [5], A. Patchkoria introduced semirings with valuations in nonnegative integers and proved that all projective semimodules over them are free. Among other consequences of this theorem, he obtained that if E is either a group, or a submonoid of a free monoid, or a submonoid of a free abelian monoid, then the classes of projective and free semimodules over the monoid semiring of E with coefficients in N coincide. Section 4 is concerned with these results.

In Section 5, using the aforementioned theorem of Patchkoria, we calculate the Grothendieck group K_0R for any semiring R with valuations in nonnegative integers.

Finally, in Section 6 we give some strengthening of the main theorem of [5] about coincidence of the classes of projective and free semimodules over semirings with valuations in nonnegative integers.

2 Preliminaries

A semiring $R = (R, +, 0, \cdot, 1)$ is an algebraic structure, where $(R, +, 0)$ is an abelian monoid, $(R, \cdot, 1)$ is a monoid and

$$
r \cdot (r' + r'') = r \cdot r' + r \cdot r'',
$$

$$
(r' + r'') \cdot r = r' \cdot r + r'' \cdot r,
$$

$$
r \cdot 0 = 0 \cdot r = 0
$$

for all $r, r', r'' \in R$. To avoid trivial exceptions, we assume that $1 \neq 0$. A map $\varphi : R \longrightarrow R'$ between semirings R and R' is called a semiring homomorphism if $\varphi : (R, +, 0) \longrightarrow$ $(R', +, 0)$ and $\varphi : (R, \cdot, 1) \longrightarrow (R', \cdot, 1)$ are monoid homomorphisms.

Let R be a semiring. Recall that an abelian monoid $M = (M, +, 0)$ together with a map $R \times M \longrightarrow M$, written $(r, m) \mapsto rm$, is called a (left) R-semimodule if

$$
r(m + m') = rm + rm',
$$

$$
(r + r')m = rm + r'm,
$$

$$
(r \cdot r')m = r(r'm),
$$

$$
1m = m, \quad 0m = 0
$$

for all $r, r' \in R$ and for all $m, m' \in M$. Right semimodules over R are similarly defined.

A map $f: A \longrightarrow B$ between R-semimodules A and B is called an R-homomorphism if $f(a + a') = f(a) + f(a')$ and $f(ra) = rf(a)$ for all $a, a' \in A$ and $r \in R$. It is obvious that any R-homomorphism carries 0 into 0.

A subset T of an R-semimodule A is a set of R-generators for A if every element of A can be written as a finite sum $\sum r_i t_i$, where $r_i \in R$ and $t_i \in T$. A is a free R-semimodule on T, or T is an R-basis of A, if each element a of A has a unique representation of the form $a = \sum$ t∈T r_t , called the representation of a by the R-basis T, where $r_t \in R$ and all but a finite number of the r_t are zero.

Proposition 2.1. Let R be a semiring without zero divisors and F a free R-semimodule. If $rw = 0, r \in R, w \in F$, then $r = 0$ or $w = 0$. \Box

An R-semimodule P is called projective if, for each surjective R-homomorphism τ : $B \longrightarrow C$ and each R-homomorphism $f : P \longrightarrow C$, there is an R-homomorphism f' : $P \longrightarrow B$ such that $f = \tau f'$.

Let M denote the variety of abelian monoids, and \mathcal{M}_R and $_R\mathcal{M}$ be the categories of right and left semimodules, respectively, over a semiring R . The tensor product bifunctor $-\otimes -$: $\mathcal{M}_R \times_R \mathcal{M} \to \mathcal{M}$ on a right semimodule $A \in \mathcal{M}_R$ and a left semimodules $B \in_R \mathcal{M}$ can be described as the factor monoid F/σ of the free abelian monoid $F \in \mathcal{M}$, generated by the cartesian product $A \times B$, factorized with respect to the congruance σ on F generated by all ordered pairs having the form

$$
\langle (a_1 + a_2, b), (a_1, b) + (a_2, b) \rangle
$$
, $\langle (a, b_1 + b_2), (a, b_1) + (a, b_2) \rangle$

and

$$
\langle (ar, b), (a, rb) \rangle
$$
, with $a_1, a_2 \in A$, $b_1, b_2 \in B$ and $r \in R$.

Thus, $A \otimes_R B = F/\sigma$, $u\omega = f : A \times B \longrightarrow A \otimes_R B = F/\sigma$ (where ω is the canonical inclusion of $A \times B$ into F, and $u : F \longrightarrow F/\sigma$ the canonical epimorphism) is an initial object in the category bih(A, B) of bihomomorphisms from $A \times B$; and $A \otimes_R B$ is generated by the elements $f(a \times b) \stackrel{def}{=} a \otimes b$ with $a \in A$ and $b \in B$.

Now, suppose that R is a semiring and M an arbitrary, multiplicatively written, monoid. The free R-semimodule $R[M]$ generated by the elements $x \in M$ consists of the finite sums \sum x∈M r_xx with coefficients $r_x \in R$. The product in M induces a product

$$
\sum_{x \in M} r_x x \cdot \sum_{y \in M} r'_y y = \sum_{x, y \in M} (r_x r'_y) xy
$$

of two such elements, and makes $R[M]$ a semiring, called the monoid semiring of M with coefficients in the semiring R.

Next, we say that an element m of monoid M is regular if $m = mxm$ for some $x \in M$; M is regular if all its elements are regular. If S is a monoid and for some $a, b \in S$ we have $a = aba$ and $b = bab$, then we say that b is an inverse of a. A monoid where every element has a unique inverse is an inverse monoid. For an abelian monoid M both notions coincide, *i.e.*, M is regular iff it is inverse $(1,$ Theorem 1.17.].

Recall that due to [1, Theorem 4.11] (see also [6, Theorem II.2.6]) each additive abelian inverse monoid $M = (M, +, 0)$ is isomorphic to its Clifford representation $R = [Y; G_{\alpha}, \varphi_{\alpha,\beta}]$,

where Y is semilattice, G_{α} is an abelian group for each $\alpha \in Y$, and for each pair $\alpha, \beta \in$ $Y\alpha \leq \beta, \varphi_{\alpha,\beta} : G_{\alpha} \to G_{\beta}$ are group homomorphisms. All homomorphisms of abelian Clifford monoids $[Y; G_{\alpha}, \varphi_{\alpha,\beta}]$ are described by the following proposition.

Proposition 2.2. ([6, Proposition II.2.8]) Consider the Clifford monoids $R = [Y; G_{\alpha}, \varphi_{\alpha,\beta}]$ and $S = [Z; H_{\alpha}, \psi_{\alpha,\beta}]$. Let $\eta: Y \longrightarrow Z$ be a homomorphism, and for each $\alpha \in Y$, let $\chi_{\alpha}: G_{\alpha} \longrightarrow H_{\alpha\eta}$ be a homomorphism such that $\psi_{\alpha\eta,\beta\eta}\chi_{\alpha} = \chi_{\beta}\varphi_{\alpha,\beta}$ for any $\alpha \leq \beta$. Then the function χ defined on R by $\chi : a \to a\chi_{\alpha}$ if $a \in G_{\alpha}$, is a homomorphism of R into S. Conversely, every homomorphism R into S can be so constructed. \Box

3 Projective semimodules over additively regular semirings with non-empty sets of characters

The results of this section are due to Y.Katsov [4].

Let $\pi: R \longrightarrow S$ be a homomorphism of semirings. Any right S-semimodule X may be considered as a right R-semimodule, denoted $\pi^{\#}X$, by defining $x \cdot r = x\pi(r)$ for any $x \in X$, $r \in R$. One can easily see that the assignments $X \longrightarrow \pi^* X$ are obviously raised to the restriction functor $\pi^{\#}: \mathcal{M}_S \longrightarrow \mathcal{M}_R$. On the other hand, thinking of S as a left R-semimodule $(r \cdot s = \pi(r)s, r \in R, s \in S)$, we have the extension functor $\pi_{\#} \stackrel{def}{=} - \otimes_R S : \mathcal{M}_R \longrightarrow \mathcal{M}_S$. As is shown in [4], $\pi_{\#}$ is a left adjoint to $\pi^{\#}$.

Before proving the main results of this section we state the following four propositions of [4].

Proposition 3.1. The extension functor $\pi_{\#}$: $\mathcal{M}_R \to \mathcal{M}_S$ preserves the subcategories of free, projective, finitely generated free and finitely generated projective semimodules, and \Box all colimits.

Proposition 3.2. If π : R \longrightarrow S is a surjective semiring homomorphism, then the functors $\pi_{\#} \pi^{\#}$ and $Id_{\mathcal{M}_S}$: $\mathcal{M}_S \longrightarrow \mathcal{M}_S$ are naturally isomorphic. \Box

A semiring $R = (R, +, 0, \cdot, 1)$ is additively regular if $(R, +, 0)$ is a regular monoid. Let R be an additively regular semiring and $[Y; G_{\alpha}, \varphi_{\alpha,\beta}]$ the Clifford representation of $(R, +, 0)$, *i.e.*, $(R, +, 0) = [Y; G_\alpha, \varphi_{\alpha,\beta}]$. Then G_r will denote the abelian group of this representation that contains the element $r \in R$, and $0_r \in G_r$ the zero (additive identity) of the group G_r .

A semiring R is additively idempotent if $(R, +, 0)$ is an idempotent monoid, *i.e.*, if for any $r \in R$, we have $r + r = r$.

Proposition 3.3. Let R be an additively regular semiring and $R^0 = \{0_r | r \in R\}$. Then, with respect to the operations defined on R , R^0 becomes an additively idempotent semiring with $0₀$ and $0₁$ as the additive and multiplicative identities, respectively. Also, the multiplication of elements of R by $0₁$ produces the surjective semiring homomorphism $0_1: R \longrightarrow R^0$, and hence, the restriction functor $0_1^\#$ $_1^{\#}: \mathcal{M}_{R^0} \longrightarrow \mathcal{M}_{R}.$ \Box

Proposition 3.4. The restriction functor $0^{\#}_1$ $C_1^\#:\mathcal{M}_{R^0}\longrightarrow \mathcal{M}_{R}$ preserves (finitely generated) projective R^0 -semimodules. \Box

Let $2 = \{0, 1\}$ be the boolean semiring $(1 + 1 = 1)$. A character of a semiring R is a homomorphism of semirings from R to $2 \lfloor 9 \rfloor$.

Now we can prove the following theorems (the proofs are taken from [4] without any changes).

Theorem 3.5. Let R be an additively regular semiring with non-empty set of characters. Then, in the category \mathcal{M}_R of right R-semimodules, the full subcategories of free (finitely generated free) and projective (finitely generated projective) (right) R-semimodules do not coincide. The left-sided analogue of this statement is also valid.

Proof. First we look at the case when R is an additively idempotent semiring, and suppose, in \mathcal{M}_R , the full subcategories of free (finitely generated free) and projective (finitely generated projective) R-semimodules coincide. Since any additively idempotent semiring is obviously additively regular, we may assume that R is an additively regular semiring which is not a ring, and $xR \oplus yR$ (here and below, where context makes it clear, R is thought as a right R-semimodule) is a free two-generated R-semimodule, i.e., $xR \cong R \cong yR$. Then, consider the two R-homomorphisms

$$
R \mathop{\rightrightarrows}\limits_{\beta}^{\alpha} xR \oplus yR
$$

that are defined on the generator $1 \in R$ by $\alpha(1) = (0_1^x, 0_1^y)$ $_{1}^{y}), \beta(1) = (0_{x}, 0_{1}^{y})$ $_{1}^{y}$), where 0_x , 0_y are zeros of xR and yR , and $0^x₁, 0^y₁$ $_1^y$ are zeros of their abelian groups $G_1^x \subset xR$ and $G_1^y \subset yR$, respectively. (Since R is not a ring, clearly $0_1^x \neq 0_x$ and $0_1^y \neq 0_y$.) Now, if τ denotes the \mathcal{M}_{R} congruence on $xR \oplus yR$ generated by $\langle (0_1^x, 0_1^y) \rangle$ $_{1}^{y}), (0_{x}, 0_{1}^{y})$ $\langle y_1^y \rangle$, and $\gamma : xR \oplus yR \longrightarrow (xR \oplus yR)/\tau$ its canonical surjection, we obtain the exact sequence

$$
R \stackrel{\alpha}{\underset{\beta}{\rightrightarrows}} xR \oplus yR \stackrel{\gamma}{\longrightarrow} (xR \oplus yR)/\tau
$$
 (1)

in \mathcal{M}_R (meaning that γ is a coequalizer of α and β).

Let $\rho : xR \oplus yR \longrightarrow xR \oplus yR$ be the homomorphism defined on the generators $(1^x, 0_y), (0_x, 1^y)$ of $xR \oplus yR$ by $\rho(1^x, 0_y) = (0_1^x, 0_y)$ and $\rho(0_x, 1^y) = (0_1^x, 0_1^y)$ $j₁$). As ρ is also a homomorphism of additively regular monoids, and $(1^x, 0_y)$ and the idempotent $(0^x, 0_y)$ belong to the same abelian group in the monoid $xR \oplus yR$, by Proposition 2.2 $\rho(1^x, 0_y) = \rho(0_1^x, 0_y)$; similarly, $\rho(0_x, 1^y) = \rho(0_x, 0^y)$ $_{1}^{y}).$

At this point of the proof, we will use the additive idempotentness of the semiring R; thus, $1^x = 0^x$ and $1^y = 0^y$, and, therefore, $\gamma(1^x, 0_y) = \gamma(0^x, 0_y)$, and $\gamma(0_x, 1^y) =$ $\gamma(0_x, 0_1^y)$ ^y₁). Then, $\rho \alpha(1) = \rho(0_1^x, 0_1^y)$ β_1^y = $\rho(0_1^x, 0_y) + \rho(0_x, 0_1^y)$ $\binom{y}{1} = (0_1^x, 0_y) + (0_1^x, 0_1^y)$ $\binom{y}{1} = \left(0_1^x, 0_1^y\right)$ $\binom{y}{1},$ and $\rho\beta(1) = \rho(0_x, 0_1^y)$ $\binom{y}{1} = \left(0_1^x, 0_1^y\right)$ ^y). Hence, there exists $\mu : (xR \oplus yR)/\tau \longrightarrow xR \oplus yR$ such that $\mu\gamma = \rho$ and, therefore, $\gamma\mu\gamma = \gamma\rho$; moreover, since $\gamma(1^x, 0_y) = \gamma(0^x, 0_y) = \gamma\rho(1^x, 0_y)$ and $\gamma(0_x, 1^y) = \gamma(0_x, 0^y)$ j_1^y = $\gamma(0_1^x, 0_1^y)$ η_1^y = $\gamma \rho(0_x, 1^y)$, one has $\gamma \rho = \gamma$. Thus, $\gamma \mu = 1_{(xR \oplus yR)/\tau}$, whence $(xR \oplus yR)/\tau$ is a projective \mathcal{M}_R -semimodule, and therefore, according to our assumption, is free.

Then, since there exists a surjective semiring homomorphism $\pi : R \longrightarrow 2$, applying the extension functor $\pi_{\#}: \mathcal{M}_R \longrightarrow \mathcal{M}_2$ to the exact sequence (1), by Proposition 3.1, in \mathcal{M}_2 we obtain the exact sequence

$$
R \otimes_R \mathbf{2} \underset{\beta \otimes 1}{\overset{\alpha \otimes 1}{\rightrightarrows}} (xR \oplus yR) \otimes_R \mathbf{2} \overset{\gamma \otimes 1}{\longrightarrow} ((xR \oplus yR)/\tau) \otimes_R \mathbf{2},
$$
 (2)

where the coequalizer $((xR \oplus yR)/\tau) \otimes_R 2$ is a free \mathcal{M}_2 -semimodule. Again using Proposition 3.1, one may readily conclude that the exact sequence (2), in fact, can be rewritten as the following exact sequence

$$
2 \frac{\alpha^*}{\beta^*} (x \cdot 2 \oplus y \cdot 2) \xrightarrow{\gamma^*} (x \cdot 2 \oplus y \cdot 2) / \tau^*,
$$
\n(3)

where α^* and β^* are completely defined by the maps $1 \longmapsto (x, y)$ and $1 \longmapsto (0, y)$, respectively; τ^* is the congruence on $x\mathbf{2} \oplus y\mathbf{2}$ generated by the pair $\langle (x, y), (0, y) \rangle$, and γ^* the canonical surjection. However, from the latter it is easy to see that $(x2 \oplus y2)/\tau^*$ is isomorphic to the three -element chain $(0, 0) < (x, 0) < (x, y)$ in $x2 \oplus y2$, which obviously is not a free 2-semimodule. Thus, we have established the theorem for an additively idempotent semiring R with non-empty set of characters.

Now let R be an additively regular semiring, and $\pi : R \longrightarrow 2$ a surjective semiring homomorphism. Then, using Proposition 2.2, one can easily see that that the restriction of π on the additively idempotent semiring R^0 gives the surjective homomorphism $\pi|_{R^0}$: $R^0 \longrightarrow 2$. Therefore, there exists a finitely generated projective (right) R^0 -semimodule P that is not free in \mathcal{M}_{R^0} . Then, by applying Proposition 3.3 and 3.2, one obtains that $P \cong 0_{1\#}0_1^{\#}P$ in \mathcal{M}_{R^0} ; whence by Propositions 3.4 and 3.1, we conclude that $0_1^{\#}P \in \mathcal{M}_R$ is a finitely generated projective, but not free, (right) R-semimodule.

The proof of the left-sided analogue of the statement is similar.

A semiring R is a division semiring if all its nonzero elements are multiplicatively invertible; and a semifiled is a commutative division semiring (see [2]).

Theorem 3.6. The classes of projective and free right (left) semimodules over the polynomial semiring $R[x_1, x_2, ..., x_n]$ over an additively regular division semiring R coincide iff R is a field.

Proof. It suffices to show that if R is an additively regular division semiring that is not a ring, then in the category of $R[x_1, x_2, ..., x_n]$ -semimodules the category of free (finitely generated free) semimodules is a proper subcategory of the category of projective (finitely generated projective) semimodules.

Thus, let R be an additively regular division semiring that is not a ring. Then, the zeros $0 \in R$ and $0₁ \in G₁ \subset R$ are different; hence, there exists $0₁⁻¹$ such that $0₁0₁⁻¹ = 0₁⁻¹0₁ = 1$. However, the multiplication by 0_1^{-1} determines the endomorphism $- \cdot 0_1^{-1}$: $(R, +)$ \longrightarrow $(R, +)$ of the additive reduct $(R, +)$ of the additively regular semiring R. Therefore by Proposition 2.2, one has, $0_10_1^{-1} = 0_1 = 1$. Hence 1 is an idempotent in $(R, +)$, and R is an additively idempotent semiring.

Next, if $a, b \in R \setminus \{0\}$ one may say that $(a + b) \in R \setminus \{0\}$, as well. Indeed, if $a + b = 0$, then $(a + b)a^{-1} = aa^{-1} + ba^{-1} = 1 + ba^{-1} = 0$; whence any element $c \in R$ is additively invertible since $c + cba^{-1} = c(1 + ba^{-1}) = 0$, what contradicts the fact that R is a semiring which is not a ring. From this observation, we conclude that there exists the surjective homomorphism $\chi : R \longrightarrow 2$ that moves $R \setminus \{0\}$ to $1 \in 2$. Therefore, combining the obvious projection $\nu : R[x_1, x_2, ..., x_n] \longrightarrow R$ onto the constant terms with χ , one obtains the surjective homomorphism $\pi : R[x_1, x_2, ..., x_n] \longrightarrow 2$. Now, since $R[x_1, x_2, ..., x_n]$ is clearly an additively regular semiring, by Theorem 3.5, we end the proof.

 \Box

 \Box

4 Projective semimodules over semirings with valuations in nonnegative integers

The definitions, examples and results (and the proofs) of this section are taken from [5].

The following standard notations are used: if M is a monoid then $U(M)$ is the group of all invertible elements of M; if R is a semiring then $U(R, +, 0)$ is the group of all additively invertible elements of R, $U(R)$ the group of all multiplicatively invertible elements of R, and $R^* = R \setminus \{0\}.$

The semiring of all non-negative integers is denoted by N.

Definition 4.1. Let R be a semiring. A function $v : R \longrightarrow N$ is called a (left) N-valuation of R if the following conditions hold:

- (i) $v(r + r') > v(r')$ whenever $r \neq 0$;
- (ii) $v(rr') > v(r')$ whenever $r \neq 0$, $r' \neq 0$ and $r \notin U(R)$;
- (iii) $v(rr') = v(r')$ for all $r \in U(R)$ and all $r' \in R$.

It immediately follows that $v(r) = 0$ implies $r = 0$, and $v(r) = 1$ implies $r \in U(R)$. At the same time v need not satisfy $v(0) = 0$ or $v(r) = 1$ for $r \in U(R)$ (see 4.3). Also note that if a semiring admits an N-valuation then any multiplicatively left (right) invertible element in it is in fact multiplicatively invertible.

A semiring with an N-valuation is called an N-valued semiring.

Proposition 4.2. Let R be an N-valued semiring. Then:

- (a) $U(R, +, 0) = 0$.
- (b) R is a semiring without zero divisors.
- (c) If $r + r' = 1$, $r, r' \in R$, then $r = 0$ or $r' = 0$.
- (d) $R\setminus U(R)$ is a two-sided ideal of R, i.e., R is a local semiring.

Proof. (a) Suppose $U(R, +, 0) \neq 0$. That is, $r + r' = 0$ for some $r, r' \in R^*$. Then $v(0) = v(r + r') > v(r') = v(r' + 0) > v(0)$, a contradiction. Hence $U(R, +, 0) = 0$.

(b) Assume $rr' = 0$ for some $r, r' \in R^*$. Then $v(0) = v(rr') > v(r') = v(r' + 0) > v(0)$, a contradiction. Hence R is a zero-divisor-free semiring.

(c) Let $r + r' = 1$ for some $r, r' \in R^*$. Then $v(1) = v(r + r') > v(r') = v(r' \cdot 1) \ge v(1)$, a contradiction. Consequently, $r + r' = 1$, $r, r' \in R$, implies $r = 0$ or $r' = 0$.

(d) It suffices to show that $J := R\setminus U(R)$ is a left ideal. (Indeed, suppose J is a left ideal. Let $\alpha \in J$, $\beta \in R$ and $\alpha\beta \notin J$. Then $\alpha\beta\gamma = 1$ and $\beta\gamma \notin J$ for some $\gamma \in R$, whence $\alpha \in U(R)$, a contradiction. Thus J is a two-sided ideal.) Let $r_1, r_2 \in J$ and $r_1 + r_2 \notin J$. Then there exists $r \in U(R)$ such that $r_1r + r_2r = 1$. This gives, by (c), that $r_1r = 0$ or $r_2r = 0$. Hence $r_2 \in U(R)$ or $r_1 \in U(R)$, contrary to $r_1, r_2 \in J$. Thus *J* is a submonoid of the monoid $(R, +, 0)$. Now suppose $\rho \in R$, $\omega \in J$, and $\rho \omega \in U(R)$. Then $v(1) = v(\rho \omega \cdot 1) = v(\rho \omega) > v(\omega) = v(\omega \cdot 1) > v(1)$, a contradiction. Thus J is a left ideal. \Box

Example 4.3. N is evidently N-valued: $v = 1 : N \longrightarrow N$. Furthermore, a function $v : \mathbb{N} \longrightarrow \mathbb{N}$ is an N-valuation if and only if it is a strictly increasing function.

Example 4.4. Let **R** be the field of real numbers. Then $\{0,1\} \cup \{r \in \mathbb{R} \mid r \geq 2\}$ is a subsemiring of **R**, and the greatest integer function $[] : \{0,1\} \cup \{r \in \mathbb{R} \mid r \geq 2\} \longrightarrow \mathbb{N}$ is an N-valuation.

Example 4.5. For any semiring R ,

$$
R' = \{(r, n) \in R \times \mathbf{N} \mid n \ge 2\} \cup \{(r, 1) \in R \times \mathbf{N} \mid r \in U(R)\} \cup \{(0, 0)\}
$$

is an N-valued subsemiring of $R \times N$. Indeed, $v : R' \longrightarrow N$, $v(r, n) = n$, is an N-valuation.

This and many more examples of N-valued semirings can be drawn from

Proposition 4.6. Let R be an N-valued semiring and $\varphi : R' \longrightarrow R$ a homomorphism of semirings such that $\text{ker}(\varphi) := \{r' \in R' | \varphi(r') = 0\} = 0$ and $\varphi^{-1}(U(R)) = U(R')$. Then R' is an N-valued semiring.

Proof. If $v : R \longrightarrow \mathbb{N}$ is an N-valuation, then so is $v\varphi : R' \longrightarrow \mathbb{N}$. \Box

Note that rings as well as semifields do not admit any N-valuations (see $4.2(a)$) and $4.2(c)$).

Definition 4.7. We say that a monoid M is N-valued if there exists a function $p : M \longrightarrow$ $\mathbf N$, called a (left) **N**-valuation of M, such that

- (i) $p(xy) > p(y)$ for all $x \in M \setminus U(M)$ and all $y \in M$;
- (ii) $p(xy) = p(y)$ for all $x \in U(M)$ and all $y \in M$.

Example 4.8. Any group G is evidently N-valued: $p(g) = 0$ for all $g \in G$. Further, let $F(T)$ be a free monoid on a set T. The function deg : $F(T) \longrightarrow N$ assigning to $x \in F(T)$ its degree (note that any free monoid has a unique basis) is an N-valuation. Clearly, the restriction of deg to any submonoid of $F(T)$ is also an N-valuation. Analogously, free abelian monoids and their submonoids are N-valued monoids.

If $\psi : M' \longrightarrow M$ is a homomorphism of monoids with $\psi^{-1}(U(M)) = U(M')$ and M is N-valued, then M' is N-valued (cf. 4.6). This together with 4.8 enable us to obtain more examples of N-valued monoids.

Proposition 4.9. Let R be a semiring and M a monoid. If R and M are both N-valued, then so is the monoid semiring $R[M]$. \Box

From 4.8 and 4.9 we get the following corollaries.

Corollary 4.10. Let R be an N-valued semiring and G an arbitrary group. Then $R[G]$ is an N-valued semiring. \Box

Corollary 4.11. Let R be an N-valued semiring and E be either a submonoid of a free monoid, or a submonoid of a free abelian monoid. Then $R[E]$ is an N-valued semiring. \square

4.12. Let R be a semiring with an N-valuation $v : R \longrightarrow N$, and let $F(T)$ be a free R-semimodule on a set T. Then $l : F(T) \longrightarrow N$ defined by

$$
l\left(\sum_{t\in T} r_t t\right) = v\left(\sum_{t\in T} r_t\right)
$$

satisfies the following conditions:

- (i) $l(a + b) > l(b)$ for all $a \in F(T) \setminus \{0\}$ and $b \in F(T)$;
- (ii) $l(rb) > l(b)$ for all $r \in R \setminus (U(R) \cup \{0\})$ and $b \in F(T) \setminus \{0\};$
- (iii) $l(rb) = l(b)$ for all $r \in U(R)$ and $b \in F(T)$.

(One may say that l is an N-valuation of the R-semimodule $F(T)$.) As an immediate consequence of (i), (ii) and (iii) we have:

(iv) If $a = r_1a_1 + \cdots + r_ma_m, r_1, \ldots, r_m \in R, a_1, \ldots, a_m \in F(T), m > 1$, and $r_1a_1 \neq 0, \ldots, r_ma_m \neq 0$, then $l(a) > l(a_j), j = 1, \ldots, m$.

Now we are ready to prove the main result and state some of its corollaries.

Theorem 4.13. If R is an N -valued semiring, then any projective R -semimodule is free.

Proof. Let P be a non-trivial projective R-semimodule. Since any projective R-semimodule is a retract of a free R-semimodule, there is a diagram

$$
F(T) \xrightarrow{~\pi~} P ,
$$

where $F(T)$ is a free R-semimodule on a set T, π and j are R-homomorphisms, and $\pi j = 1$. Clearly, in addition, one may assume that j is an inclusion and that $\pi(t) \neq 0$ for any $t \in T$. We show that the set

$$
S = \{ s \in T \mid s = r\pi(t) \text{ for some } t \in T \text{ and } r \in U(R) \}
$$

is an R-basis of P. Obviously, since $S \subset T$ and $\pi(T)$ is a set of R-generators for the R-semimodule P, it suffices to see that for any $t \in T$, $\pi(t) = \sum$ $r_s^t s, r_s^t \in R.$

s∈S As R is an N-valued semiring, there is, as noted above, a function $l : F(T) \longrightarrow N$ satisfying 4.12(i)–(iv). The function l and the set $\pi(T)$ uniquely determine a strictly increasing (finite or infinite) sequence

$$
n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots
$$

of positive integers as follows. A positive integer n is a term of this sequence if and only if there exists $t \in T$ with $l(\pi(t)) = n$ (in view of 4.12(i), $l(a) > 0$ whenever $a \neq 0$). Next, for any $t \in T$, one has the representation of $\pi(t)$ by the R-basis T:

$$
\pi(t) = r_1^t t_1 + \dots + r_m^t t_m, \ \ r_1^t, \dots, r_m^t \in R^*, \ \ t_1, \dots, t_m \in T.
$$
 (*)

Applying π to (*) and using 2.1 and 4.2(b), we obtain

$$
\pi(t) = r_1^t \pi(t_1) + \dots + r_m^t \pi(t_m), \ \ r_1^t \pi(t_1) \neq 0, \dots, r_m^t \pi(t_m) \neq 0. \tag{**}
$$

Let (*) be the representation of $\pi(t)$ with $l(\pi(t)) = n_1$. Then $m = 1$ and $r_1^t \in U(R)$. Indeed, when $m > 1$ or $r_1^t \notin U(R)$, we get, by (**) and 4.12(ii),(iv), that $n_1 = l(\pi(t)) >$ $l(\pi(t_1))$, contradicting $n_1 = \min\{l(\pi(t)) | t \in T\}$. Thus, if $l(\pi(t)) = n_1$ then $\pi(t) = rs$, $r \in U(R)$, $s \in S$. This suggests to continue the proof by induction on k. Assume that

 r_s^{τ} s, and let (*) be the representation for any $\tau \in T$ with $l(\pi(\tau)) \leq n_k$ one has $\pi(\tau) = \sum$ s∈S of $\pi(t)$ with $l(\pi(t)) = n_{k+1}$. If $m = 1$ and $r_1^t \in U(R)$, then $\pi(t) = rs$, where $r = r_1^t$ and $s = t_1 \in S$. Suppose $m > 1$ or $r_1^t \notin U(R)$. It then follows from $(**)$ and 4.12(ii),(iv) that $l(\pi(t)) > l(\pi(t_j)),$ $j = 1, \ldots, m$. That is, $l(\pi(t_j)) \leq n_k$, $j = 1, \ldots, m$. Hence, by $r_s^{(j)}s, j = 1, \ldots, m$. Consequently, since $\pi(t) =$ the induction assumption, $\pi(t_j) = \sum$ s∈S $\sum_{i=1}^{m}$ $\left(\begin{array}{c}\frac{m}{2}\end{array}\right)$ $r_j^tr_s^{(j)})$ s. $r_j^t \pi(t_j)$, one has $\pi(t) = \sum_{s \in S}$ \Box $j=1$ $j=1$

Corollary 4.14 ([3]). Any projective N -semimodule (i.e., any projective abelian monoid) \Box is free.

Proposition 4.9 and Theorem 4.13 yield

Corollary 4.15. If R is an N-valued semiring and M an N-valued monoid, then any projective $R[M]$ -semimodule is free. \Box

This theorem together with Corollary 4.10 gives

Corollary 4.16. Let R be an N-valued semiring and G an arbitrary group. Then any projective $R[G]$ -semimodule is free. \Box

In particular, we have

Corollary 4.17. For any group G , all projective $N[G]$ -semimodules are free. \Box

Theorem 4.13 and Corollary 4.11 give

Corollary 4.18. Let R be an N-valued semiring and suppose that E is either a submonoid of a free monoid, or a submonoid of a free abelian monoid. Then any projective $R[E]$ semimodule is free. \Box

As a special case of 4.18 we single out

Corollary 4.19. For any N-valued semiring R the classes of projective and free semimodules over the polynomial semiring $R[x_1, \ldots, x_n]$ coincide. In particular, all projective $N[x_1, \ldots, x_n]$ -semimodules are free. \Box

5 The Grothendieck Group of an N-Valued Semiring

In this section, using Theorem 4.13, we calculate the Grothendieck group K_0R of an Nvalued Semiring R.

5.1. Let R be a semiring without zero divisors and with $U(R, +, 0) = 0$. If $r_1, \ldots, r_n, r'_1, \ldots, r'_n$ are nonzero elements of R, then $r_1r'_1 + \cdots + r_nr'_n \neq 0$.

Proposition 5.2. Let R be a semiring without zero divisors and with $U(R, +, 0) = 0$, and suppose that 1 is additively irreducible, i.e., whenever $r + r' = 1$, $r, r' \in R$, one has $r = 0$ or $r' = 0$. Suppose further that F is a free R-semimodule and $S, T \subset F$ are R-bases of F. Then for any $s \in S$ there exists a unique $r_s \in U(R)$ such that $r_s s \in T$.

Proof. Let $s_0 \in S$. Represent s_0 by the R-basis T:

$$
s_0 = r_1 t_1 + \dots + r_n t_n, \ \ r_1 \neq 0, \dots, r_n \neq 0.
$$

On the other hand, for each $i, i = 1, \ldots, n$, one has the representation of t_i by the R-basis S:

$$
t_1 = \sum_{s \in S} r_s^{(1)} s, \dots, t_n = \sum_{s \in S} r_s^{(n)} s.
$$

So we have

$$
s_0 = \sum_{s \in S} (r_1 r_s^{(1)} + \dots + r_n r_s^{(n)}) s,
$$

whence

$$
r_1 r_{s_0}^{(1)} + \cdots + r_n r_{s_0}^{(n)} = 1
$$
, and $r_1 r_s^{(1)} + \cdots + r_n r_s^{(n)} = 0$ for all $s \neq s_0$.

From the latter we conclude that

$$
r_s^{(1)} = 0, \dots, r_s^{(n)} = 0 \text{ for all } s \in S \setminus \{s_0\}
$$

since $r_1 \neq 0, \ldots, r_n \neq 0$, $U(R, +, 0) = 0$ and R is a zero-divisor-free semiring. Consequently,

$$
t_1 = r_{s_0}^{(1)} s_0, \dots, t_n = r_{s_0}^{(n)} s_0,
$$

whence $r_{s_0}^{(1)} \neq 0, \ldots, r_{s_0}^{(n)} \neq 0$.

As noted above $r_1 r_{s_0}^{(1)} + \cdots + r_n r_{s_0}^{(n)} = 1$. Suppose $n > 1$. Then, by 5.1, $r_1 r_{s_0}^{(1)} \neq 0$ and $r_2r_{s_0}^{(2)} + \cdots + r_nr_{s_0}^{(n)} \neq 0$, a contradiction to our assumption that 1 is additively irreducible. Hence $n = 1$. So, in fact, $s_0 = r_1 t_1$. This together with $t_1 = r_{s_0}^{(1)} s_0$ gives $s_0 = r_1 r_{s_0}^{(1)} s_0$ and $t_1 = r_{s_0}^{(1)} r_1 t_1$, whence $r_1 r_{s_0}^{(1)} = 1$ and $r_{s_0}^{(1)} r_1 = 1$. Thus we have $r_{s_0}^{(1)} s_0 = t_1 \in T$ and $r_{s_0}^{(1)} \in U(R)$. As T is an R-basis of F, the uniqueness of r_s is obvious. \Box

Corollary 5.3. Let R, F, S, and T be as in 5.2. Then card(S) = card(T).

Proof. For any $s \in S$ there exists, by 5.2, a unique $r_s \in U(R)$ with $r_s s \in T$. Define $\theta : S \longrightarrow T$ by $\theta(s) = r_s s$. Since S is an R-basis of F, θ is one-to-one. Let $t \in T$. By 5.2, there exists a unique $r_t \in U(R)$ such that $r_t t = s \in S$. Clearly, $r_s = r_t^{-1}$. Hence $\theta(s) = t$. Thus θ is onto. \Box

Let R be a semiring. Recall [8] the construction of K_0R . Let $P(R)$ denote the class of all finitely generated projective R-semimodules and let $\langle P \rangle$ denote the isomorphism class of $P \in \mathbf{P}(R)$. K_0R is the abelian group with generators $\langle P \rangle$, $P \in \mathbf{P}(R)$, and relations $\langle P_1 \rangle + \langle P_2 \rangle = \langle P_1 \oplus P_2 \rangle, P_1, P_2 \in \mathbf{P}(R).$

It was shown in [8] that $K_0 N$ is the infinite cyclic group generated by class $\langle N \rangle$. The following statement generalizes this result to N-valued semirings.

Proposition 5.4. For any N-valued semiring R, K_0R is the infinite cyclic group generated by class $\langle R \rangle$.

Proof. Let $k, k' \in \mathbb{N}$. By 5.3 and 4.2, R^k is isomorphic to $R^{k'}$ if and only if $k = k'$. That is, $\langle R^k \rangle = \langle R^{k'} \rangle$ iff $k = k'$. From this and Theorem 4.13 we have $K_0R = F/H$, where F is the free abelian group generated by $\langle R \rangle, \langle R^2 \rangle, \ldots, \langle R^n \rangle, \ldots$, and H the subgroup of F generated by all elements of the form $\langle R^m \rangle + \langle R^n \rangle - \langle R^{m+n} \rangle$, $m, n > 0$. Clearly, $k \cdot \text{class}\langle R \rangle = \text{class}\langle R^k \rangle, k \in N.$ Hence K_0R is a cyclic group generated by class $\langle R \rangle$. It then remains to prove that $k \cdot \text{class}(R) = 0$ implies $k = 0$. Let Z be the additive group of integers and $\theta: F \longrightarrow Z$ the homomorphism defined by $\theta(\langle R^k \rangle) = k$. Assume that $k \cdot \text{class}\langle R \rangle = 0$, i.e., $\text{class}\langle R^k \rangle = 0$. Then

$$
\langle R^k \rangle = \sum_i a_i \big(\langle R^{m_i} \rangle + \langle R^{n_i} \rangle - \langle R^{m_i + n_i} \rangle \big), \quad a_i \in \mathbb{Z}.
$$

Applying θ to this, we get $k = 0$.

 \Box

6 Irreducible elements

In this section we show that Theorem 4.13 can be proved using only (i) and (ii) of 4.1.

Definition 6.1. A non-zero element of an R-semimodule A is said to be R-irreducible if the following conditions are satisfied:

(i) u is additively irreducible, that is, whenever $u = a+b$, $a, b \in A$, one has $a = 0$ or $b = 0$.

(ii) whenever $u = ra$, $a \in A$, $r \in R$, one has $r \in U(R)$.

The set of all R-irreducible elements of an R-semimodule A will be denoted by $I_R(A)$.

Proposition 6.2. let R be a semiring and $v : R \rightarrow N$ a function satisfying (i) and (ii) of 4.1. Suppose further that $F(T)$ is a free R-semimodule on a set T. Then any R-subsemimodule A of $F(T)$ is generated by $I_R(A)$.

Proof. Define $l : A \rightarrow N$ by

$$
l(\sum_{t \in T} r_t t) = v(\sum_{t \in T} r_t).
$$

Clearly,

(11) $l(a + b) > l(b)$ for all $a \in A \setminus \{0\}$ and $b \in A$. and

(12)
$$
l(ra) > l(a)
$$
 for all $r \in R \setminus (U(R) \cup \{0\})$ and $a \in A \setminus 0$.

(Note that $ra = 0$ implies $r = 0$ or $a = 0$.) The function $l : A \rightarrow N$ uniquely determines a strictly increasing sequence

$$
n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots
$$

of positive integers as follows. A positive integer n is a term of this sequence if and only if there exists $a \in A$, $a \neq 0$, with $l(a) = n$. It immediately follows from (11) and (12) that any $a \in A$ with $l(a) = n_1$ is R-irreducible in A. Assume now that any $x \in A$ with $l(x) \leq n_k$ has a representation of the form

$$
x=\sum_{u\in I_R(A)}r_uu, \; r_u\in R,
$$

and take any $a \in A$ with $l(a) = n_{k+1}$. If $a \in I_R(A)$, there is nothing to prove. Suppose that $a \notin I_R(A)$. If 6.1(i) does not hold, then $a = b + c$, $b, c \in A$, $b \neq 0$ $a \neq 0$. By (11),

 $l(b) < l(a)$ and $l(c) < l(a)$. That is, $l(b) \leq n_k$ and $l(c) \leq n_k$. Therefore by the induction assumption,

$$
b=\sum_{u\in I_R(A)}r'_uu,\;\;c=\sum_{u\in I_R(A)}r''_uu,\;r'_u,r''_u\in R
$$

whence

$$
a = \sum_{u \in I_R(A)} (r'_u + r''_u)u.
$$

If 6.1 (ii) does not hold for a, then $a = rd$, $d \in A$, $r \in R \setminus U(R)$. This by (12), gives $l(d) < l(a)$. That is $l(d) \leq n_k$. Consequently, by the induction assumption,

$$
d = \sum_{u \in I_R(A)} r_u u, \ r_u \in R,
$$

whence

.

$$
a = \sum_{u \in I_R(A)} (rr_u)u
$$

Proposition 6.3. Let R be a semiring with $U(R, +, 0) = 0$ and without zero devisors and let P be a projective R-semimodule. If P is generated by $I_R(P)$, then P is a free R-semimodule.

Proof. There is a diagram

$$
F(T) \xrightarrow{ \pi \atop \longrightarrow \atop j} P ,
$$

where $F(T)$ is a free R-semimodule on a set T, π and j are R-homomorphisms, and $\pi j = 1$. In addition, one may assume that j is an inclusion and that $\pi(t) \neq 0$ for any $t \in T$. Take any $u \in I_R(P)$ and represent it by the R-basis T:

$$
u = r_1 t_1 + \dots + r_n t_n, \ t_1, \dots, t_n \in T, \ r_1, \dots, r_n \in R \setminus \{0\}
$$

whence

$$
u = r_1 \pi(t_1) + \cdots + r_n \pi(t_n).
$$

This implies $n = 1$ and $r_1 \in U(R)$ since R is a zero-devisor-free semiring, $U(R, +, 0) = 0$ and $u \in I_R(P)$. Hence $u = r_1t_1$, i.e., $t_1 = r_1^{-1}u \in P$. Consequently, P is a free Rsemimodule over the set

$$
\{t \in T \mid t = ru \text{ for some } u \in I_R(P) \text{ and } r \in U(R)\}
$$

Propositions 6.2 and 6.3 give

Corollary 6.4. Let R be a semiring and $v : R \to N$ a function satisfying (i) and (ii) of 4.1. Then any projective R-semimodule is free.

Proof. It suffices to note that $U(R, +, 0) = 0$ and R is a zero-devisor-free semiring (see the proofs of 4.2(a) and 4.2(b), respectively).

 \Box

 \Box

References

- [1] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups: Vol. I*, A.M.S. Survey # 7, Amer. Math. Soc., Providence, 1961.
- [2] J. S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dordrecht-Boston-London, 1999.
- [3] P. A. Grillet, *On free commutative semigroups*, J. Natur. Sci. and Math., 9(1969), 71-78.
- [4] Y. Katsov, Toward homological characterization of semirings: Serre's conjecture and Bass's perfectness in semiring context, Algebra Universalis, 52(2004), 197-214.
- [5] A. Patchkoria, Projective semimodules over semirings with valuations in nonnegative integers, Semigroup Forum (Accepted: 18 March 2009, Published online: 7 April 2009, DOI 10.1007/s00233-009-9147-z).
- [6] M. Petrich, Inverse Semigroups, John Wiley & Sons, Inc., New-York, 1984.
- [7] O. Sokratova, On semimodules over commutative, additively idempotent semirings, Semigroup Forum 64(2002), 1–11.
- [8] Xiangdong Tang, A semiring whose Grothendieck group is not isomorphic to the Grothendieck group of the ring completion of the semiring, Semigroup Forum, 70(2004), 150-153.
- [9] Huaxiong Wang, On characters of semirings, Houston Journal of Mathematics, 23(1997), 391-405.