Iv. JAVAKHISHVILI TBILISI STATE UNIVERSITY

FACULTY OF EXACT AND NATURAL SCIENCES

George Nadareishvili

MASTER D EGREE THESIS
MATHEMATICS

On Projective Semimodules

Scientific Supervisor: Prof. Alex Patchkoria

TBILIST - 2011



1 Introduction

Numerous investigations on freeness of projective modules over rings have led to many
remarkable results. It suffices to mention the Quilen-Suslin theorem confirming Serre’s
famous conjecture on coincidence of the classes of free and projective modules over poly-
nomial rings with coefficients in a field. At the same time there are only few results
which deal with the problem on freeness of projective semimodules over semirings. In [7]
O. Sokratova proved that for any nonzero commutative, additively idempotent semiring .S,
free S-semimodules constitute a proper subclass of the class of projective S-semimodules.
Later Y.Katsov [4] extended this result to additively regular semirings with non-empty sets
of characters. As a consequence of the latter, he showed that the classes of projective and
free semimodules over the polynomial semiring R[z, xs, ..., z,] over an additively regular
division semiring R coincide if and only if R is a field. In Section 3 of this work the proofs
of the Katsov’s results are presented.

Next, It is known that all projective semimodules over the semiring N of nonnegative
integers, i.e., all projective abelian monoids are free. Recently, in [5], A. Patchkoria in-
troduced semirings with valuations in nonnegative integers and proved that all projective
semimodules over them are free. Among other consequences of this theorem, he obtained
that if F is either a group, or a submonoid of a free monoid, or a submonoid of a free abelian
monoid, then the classes of projective and free semimodules over the monoid semiring of
E with coefficients in N coincide. Section 4 is concerned with these results.

In Section 5, using the aforementioned theorem of Patchkoria, we calculate the Grothen-
dieck group KR for any semiring R with valuations in nonnegative integers.

Finally, in Section 6 we give some strengthening of the main theorem of [5] about
coincidence of the classes of projective and free semimodules over semirings with valuations

in nonnegative integers.



2 Preliminaries

A semiring R = (R, +,0, -, 1) is an algebraic structure, where (R, +, 0) is an abelian monoid,
(R,-,1) is a monoid and

re(r'+r")=r-r"+r-0"
'+ r=0" 0"
r-0=0-r=0

for all r,7’, " € R. To avoid trivial exceptions, we assume that 1 #0. Amap ¢ : R — R’
between semirings R and R’ is called a semiring homomorphism if ¢ : (R,+,0) —
(R',+,0) and ¢ : (R,-,1) — (R',-, 1) are monoid homomorphisms.

Let R be a semiring. Recall that an abelian monoid M = (M, +,0) together with a

map R x M — M, written (r,m) — rm, is called a (left) R-semimodule if
r(m+m') =rm+rm/,

(r+7"Ym=rm+r'm,
(r-r")ym =r(r'm),
Im=m, O0m=0

for all r,7" € R and for all m,m’ € M. Right semimodules over R are similarly defined.

A map f: A— B between R-semimodules A and B is called an R-homomorphism if
fla+d) = fla)+ f(d) and f(ra) =rf(a) for all a,a’ € A and r € R. It is obvious that
any R-homomorphism carries 0 into 0.

A subset T of an R-semimodule A is a set of R-generators for A if every element of A
can be written as a finite sum »_ r;t;, where r; € R and t; € T. A is a free R-semimodule
on T, or T is an R-basis of A, if each element a of A has a unique representation of the
form a = > rt, called the representation of a by the R-basis T, where r, € R and all but
a finite mifnTber of the r, are zero.

Proposition 2.1. Let R be a semiring without zero divisors and F' a free R-semimodule.

Ifrw=0,re R,weF, thenr=0 orw=0. 0



An R-semimodule P is called projective if, for each surjective R-homomorphism 7 :
B — C and each R-homomorphism f : P — (| there is an R-homomorphism f’ :
P — B such that f = 7f".

Let M denote the variety of abelian monoids, and Mgz and g M be the categories of
right and left semimodules, respectively, over a semiring R. The tensor product bifunctor
—®— : MrxpM — M on a right semimodule A € Mpg and a left semimodules
B €r M can be described as the factor monoid F'/o of the free abelian monoid F' € M,
generated by the cartesian product A x B, factorized with respect to the congruance o on

F' generated by all ordered pairs having the form
<(CL1 + aq, b)7 (ah b) + (0’27 b)>7 <((l, bl + b2)7 (CL7 bl) + (CL, b2)>

and

((ar,b), (a,rb)), with aj,a2 € A, b;,bo € B and r € R.

Thus, AQgr B = F/o, uw =f: AXx B — A®r B = F/o (where w is the canonical
inclusion of A x B into F, and u : FF — F/o the canonical epimorphism) is an initial
object in the category bih(A, B) of bihomomorphisms from A x B; and A®g B is generated
by the elements f(a x b) “? a ® b with a € A and b € B.
Now, suppose that R is a semiring and M an arbitrary, multiplicatively written, monoid.
The free R-semimodule R[M] generated by the elements x € M consists of the finite sums
ZMQ:U with coefficients r, € R. The product in M induces a product
ze
DY ry= Y (rar)ay
zeEM yeM z,yeM
of two such elements, and makes R[M] a semiring, called the monoid semiring of M with
coefficients in the semiring R.
Next, we say that an element m of monoid M is regular if m = mam for some x € M;
M is regular if all its elements are regular. If S is a monoid and for some a,b € S we
have a = aba and b = bab, then we say that b is an inverse of a. A monoid where every
element has a unique inverse is an inverse monoid. For an abelian monoid M both notions
coincide, i.e., M is regular iff it is inverse ([1, Theorem 1.17]).
Recall that due to [1, Theorem 4.11] (see also [6, Theorem I1.2.6]) each additive abelian

inverse monoid M = (M, +, 0) is isomorphic to its Clifford representation R = [Y'; G, ¢ 5],
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where Y is semilattice, G, is an abelian group for each a € Y, and for each pair o, 3 €
Ya < B,¢aps 1 Go — Gp are group homomorphisms. All homomorphisms of abelian

Clifford monoids [Y; Gy, ¢a.g] are described by the following proposition.

Proposition 2.2. ([6, Proposition I1.2.8]) Consider the Clifford monoids R = [Y'; Gy, ¢a.s)
and S = [Z;Hy,Vap). Let n Y — Z be a homomorphism, and for each o € Y, let
Xa : Goa — Hqoy be a homomorphism such that Yy gnXa = X8Pas for any a < 3. Then
the function x defined on R by x : a — axq if a € Gq, is a homomorphism of R into S.

Conversely, every homomorphism R into S can be so constructed. [



3 Projective semimodules over additively regular
semirings with non-empty sets of characters

The results of this section are due to Y.Katsov [4].

Let 7 : R — S be a homomorphism of semirings. Any right S-semimodule X may
be considered as a right R-semimodule, denoted 7# X, by defining = - r = xm(r) for any
r € X, r € R. One can easily see that the assignments X — 7% X are obviously
raised to the restriction functor 7# : Mg — Mp. On the other hand, thinking of S
as a left R-semimodule (r-s = m(r)s, r € R, s € S), we have the extension functor
Ty o ®r S : Mp — Mg. As is shown in [4], my is a left adjoint to 7#.

Before proving the main results of this section we state the following four propositions

of [4].

Proposition 3.1. The exstension functor my : Mpr — Mg preserves the subcategories of

free, projective, finitely generated free and finitely generated projective semimodules, and

all colimits. [
Proposition 3.2. If 7 : R — S is a surjective semiring homomorphism, then the
functors Tum® and Idpg @ Mg — Mg are naturally isomorphic. H

A semiring R = (R, +,0, -, 1) is additively regular if (R, +, 0) is a regular monoid. Let R
be an additively regular semiring and [Y'; G,, pa 5] the Clifford representation of (R, +,0),
i.e., (R,+,0) =[Y;Gq, ¢ap|- Then G, will denote the abelian group of this representation
that contains the element r € R, and 0, € G, the zero (additive identity) of the group G,.

A semiring R is additively idempotent if (R, +,0) is an idempotent monoid, i.e., if for

any r € R, we have r +r =r.

Proposition 3.3. Let R be an additively regular semiring and R® = {0,| r € R}. Then,
with respect to the operations defined on R, R° becomes an additively idempotent semir-
ing with 0p and 01 as the additive and multiplicative identities, respectively. Also, the
multiplication of elements of R by 01 produces the surjective semiring homomorphism

0 : R — R°, and hence, the restriction functor Of : Mpo — Mp. l

Proposition 3.4. The restriction functor Ofﬁ : Mpo — My preserves (finitely generated)

projective RO-semimodules. O



Let 2 = {0,1} be the boolean semiring (1 +1 = 1). A character of a semiring R is a
homomorphism of semirings from R to 2 [9].
Now we can prove the following theorems (the proofs are taken from [4] without any

changes).

Theorem 3.5. Let R be an additively reqular semiring with non-empty set of characters.
Then, in the category Mg of right R-semimodules, the full subcategories of free (finitely
generated free) and projective (finitely generated projective) (right) R-semimodules do not

coincide. The left-sided analogue of this statement is also valid.

Proof. First we look at the case when R is an additively idempotent semiring, and suppose,
in Mg, the full subcategories of free (finitely generated free) and projective (finitely gen-
erated projective) R-semimodules coincide. Since any additively idempotent semiring is
obviously additively regular, we may assume that R is an additively regular semiring which
is not a ring, and xR @ yR (here and below, where context makes it clear, R is thought as
a right R-semimodule) is a free two-generated R-semimodule, i.e., zR = R = yR. Then,

consider the two R-homomorphisms
R=a2R®yR
B

that are defined on the generator 1 € R by «(1) = (07,0Y), (1) = (04, 0Y), where 0,0, are
zeros of xR and yR, and 07,0Y are zeros of their abelian groups GY C zR and G} C yR,
respectively. (Since R is not aring, clearly 07 # 0, and 0Y # 0,.) Now, if 7 denotes the M g-
congruence on xR ®yR generated by ((07,0Y), (0,,0%)), and v : tR®yR — (xR®yR)/T

its canonical surjection, we obtain the exact sequence

R=2R®yR 5 (R ® yR) /7 (1)
B

in Mp (meaning that v is a coequalizer of a and ().

Let p : TR @ yR — =R & yR be the homomorphism defined on the generators
(1*,0,), (0., 1Y) of ztR®YR by p(1*,0,) = (07,0,) and p(0,, 1¥) = (07,0Y). As pis also a ho-
momorphism of additively regular monoids, and (1%, 0,) and the idempotent (07, 0,) belong
to the same abelian group in the monoid zR@yR , by Proposition 2.2 p(1%,0,) = p(07, 0,);
similarly, p(0,, 1Y) = p(0,, 0Y).



At this point of the proof, we will use the additive idempotentness of the semiring
R; thus, 1* = 07 and 1Y = 0Y, and, therefore, v(1%,0,) = ~(07,0,), and ~(0,,1¥) =
7(0z,07). Then, pa(1) = p(07,07) = p(0f,0,) + p(0.,07) = (07,0,) + (0F,07) = (07,07),
and pB(1) = p(0,,07) = (07,0Y). Hence, there exists u : (tR® yR)/T — xR & yR such
that py = p and, therefore, yuy = vp; moreover, since v(1%,0,) = ~(07,0,) = vp(1%,0,)
and 7(0,, 1¥) = 7(0;,07) = (07,07) = yp(0, 1¥), one has yp = 7. Thus, yu = Lizrayr)/r
whence (zR @ yR)/T is a projective Mpg-semimodule, and therefore, according to our
assumption, is free.

Then, since there exists a surjective semiring homomorphism 7 : R — 2, applying the
extension functor my : Mpr — M to the exact sequence (1), by Proposition 3.1, in M,
we obtain the exact sequence

a®l /@1

R®r2 =3 (zR®yR)®r2 — ((tR®yR)/T) ®g 2, (2)
B®1

where the coequalizer ((zR @ yR)/T) ®g 2 is a free Ma-semimodule. Again using Propo-
sition 3.1, one may readily conclude that the exact sequence (2), in fact, can be rewritten

as the following exact sequence

2=2(22 B y2) - (22 @ y2) /77, (3)
B*

where o and * are completely defined by the maps 1 — (z,y) and 1 — (0, y), respec-

*

tively; 7* is the congruence on x2 @ y2 generated by the pair ((x,y), (0,y)), and v* the
canonical surjection. However, from the latter it is easy to see that (z2®y2)/7* is isomor-
phic to the three -element chain (0,0) < (z,0) < (z,y) in 2 & y2, which obviously is not
a free 2-semimodule. Thus, we have established the theorem for an additively idempotent
semiring R with non-empty set of characters.

Now let R be an additively regular semiring, and 7 : R — 2 a surjective semiring
homomorphism. Then, using Proposition 2.2, one can easily see that that the restriction
of m on the additively idempotent semiring R" gives the surjective homomorphism 7|zo :
RY — 2. Therefore, there exists a finitely generated projective (right) RY-semimodule

P that is not free in Mpzo. Then, by applying Proposition 3.3 and 3.2, one obtains that
P = Ol#Of&P in Mpgo; whence by Propositions 3.4 and 3.1, we conclude that Of&P € Mg



is a finitely generated projective, but not free, (right) R-semimodule.

The proof of the left-sided analogue of the statement is similar. m

A semiring R is a division semiring if all its nonzero elements are multiplicatively

invertible; and a semifiled is a commutative division semiring (see [2]).

Theorem 3.6. The classes of projective and free right (left) semimodules over the polyno-
mial semiring R[x1, xo, ..., x,] over an additively reqular division semiring R coincide iff R

15 a field.

Proof. Tt suffices to show that if R is an additively regular division semiring that is not
a ring, then in the category of R[xi, s, ..., x,]-semimodules the category of free (finitely
generated free) semimodules is a proper subcategory of the category of projective (finitely
generated projective) semimodules.

Thus, let R be an additively regular division semiring that is not a ring. Then, the zeros
0 € Rand 0; € G; C R are different; hence, there exists 0, such that 0,0, = 0;'0; = 1.
However, the multiplication by 0;' determines the endomorphism — - 0;' : (R, +) —
(R,+) of the additive reduct (R,+) of the additively regular semiring R. Therefore by
Proposition 2.2, one has, 0,0;* = 0; = 1. Hence 1 is an idempotent in (R, +), and R is an
additively idempotent semiring.

Next, if a,b € R\ {0} one may say that (a+0b) € R\ {0}, as well. Indeed, if a +b =0,
then (a +b)a™! = aa™' +ba™! = 1+ ba~! = 0; whence any element ¢ € R is additively
invertible since ¢+ cba™ = ¢(1+ ba~') = 0, what contradicts the fact that R is a semiring
which is not a ring. From this observation, we conclude that there exists the surjective
homomorphism x : R — 2 that moves R\ {0} to 1 € 2. Therefore, combining the
obvious projection v : R[xy, 3, ..., z,] — R onto the constant terms with x, one obtains
the surjective homomorphism 7 : R[xq, %o, ...,2,] —> 2. Now, since Rz, s, ...,x,] is

clearly an additively regular semiring, by Theorem 3.5, we end the proof.



4 Projective semimodules over semirings with
valuations in nonnegative integers

The definitions, examples and results (and the proofs) of this section are taken from [5].

The following standard notations are used: if M is a monoid then U(M) is the group of
all invertible elements of M; if R is a semiring then U (R, +,0) is the group of all additively
invertible elements of R, U(R) the group of all multiplicatively invertible elements of R,
and R* = R\ {0}.

The semiring of all non-negative integers is denoted by N.

Definition 4.1. Let R be a semiring. A function v : R — N is called a (left) N-valuation
of R if the following conditions hold:
(i) v(r+7") > v(r') whenever r # 0;
(ii) v(rr’) > v(r") whenever r # 0, ' # 0 and r ¢ U(R);
(iii) v(rr') = ov(r') for all r € U(R) and all ' € R.

It immediately follows that v(r) = 0 implies » = 0, and v(r) = 1 implies r € U(R). At
the same time v need not satisfy v(0) = 0 or v(r) = 1 for r € U(R) (see 4.3). Also note
that if a semiring admits an N-valuation then any multiplicatively left (right) invertible

element in it is in fact multiplicatively invertible.

A semiring with an N-valuation is called an N-valued semiring.

Proposition 4.2. Let R be an N-valued semiring. Then:
(a) U(R,+,0)=0.
(b) R is a semiring without zero divisors.
(c) Ifr+7" =1, r,1" € R, thenr =0 or+" =0.
(d) R\U(R) is a two-sided ideal of R, i.e., R is a local semiring.

Proof. (a) Suppose U(R,+,0) # 0. That is, r + " = 0 for some r,7” € R*. Then
v(0) =v(r+7") > ov(r") =v(r’ +0) > v(0), a contradiction. Hence U(R,+,0) = 0.
(b) Assume rr’ = 0 for some r,7’ € R*. Then v(0) = v(rr’) > v(r') = v(r' + 0) > v(0),

a contradiction. Hence R is a zero-divisor-free semiring.



(c) Let r+ 1" =1 for some r, 7’ € R*. Then v(1) =v(r +7') > v(r") =v(' - 1) > v(1),
a contradiction. Consequently, r + 1" =1, r,7’ € R, implies r = 0 or ' = 0.

(d) It suffices to show that J : = R\U(R) is a left ideal.(Indeed, suppose J is a left
ideal. Let « € J, B € R and aff ¢ J. Then afy = 1 and By ¢ J for some v € R,
whence o € U(R), a contradiction. Thus J is a two-sided ideal.) Let 7,79 € J and
1+ 12 & J. Then there exists r € U(R) such that rir + ror = 1. This gives, by (c),
that 77 = 0 or ror = 0. Hence ro € U(R) or r; € U(R), contrary to r1,79 € J. Thus
J is a submonoid of the monoid (R,+,0). Now suppose p € R, w € J, and pw € U(R).
Then v(1) = v(pw - 1) = v(pw) > v(w) = v(w - 1) > v(1), a contradiction. Thus J is a left
ideal. ]

Example 4.3. N is evidently N-valued: v = 1 : N — N. Furthermore, a function

v : N — N is an N-valuation if and only if it is a strictly increasing function.

Example 4.4. Let R be the field of real numbers. Then {0,1} U {r € R|r > 2} is a
subsemiring of R, and the greatest integer function []: {0,1} U{r € R|r > 2} — N is

an N-valuation.
Example 4.5. For any semiring R,
R ={(r,n)e RxN|n>2}U{(r,1)e RxN|reUR)}U{(0,0)}
is an N-valued subsemiring of Rx N. Indeed, v : R" — N, v(r,n) = n, is an N-valuation.
This and many more examples of N-valued semirings can be drawn from

Proposition 4.6. Let R be an N-valued semiring and ¢ : R© — R a homomorphism of
semirings such that ker(p) : = {r' € R'|p(r') =0} =0 and p~*(U(R)) = U(R'). Then R’

1s an N-valued semiring.
Proof. If v: R — N is an N-valuation, then so is vy : R' — N. [

Note that rings as well as semifields do not admit any N-valuations (see 4.2(a) and
4.2(c)).

Definition 4.7. We say that a monoid M is N-valued if there exists a function p : M —
N, called a (left) N-valuation of M, such that

10



(i) p(zy) > p(y) for all x € M\U(M) and all y € M;
(ii) p(xy) =p(y) for all x € U(M) and all y € M.

Example 4.8. Any group G is evidently N-valued: p(g) = 0 for all g € G. Further, let
F(T) be a free monoid on a set 7. The function deg : F(T') — N assigning to x € F(T)
its degree (note that any free monoid has a unique basis) is an N-valuation. Clearly, the
restriction of deg to any submonoid of F(T) is also an N-valuation. Analogously, free

abelian monoids and their submonoids are N-valued monoids.

If ¢ : M' — M is a homomorphism of monoids with ¢»=}(U(M)) = U(M') and M is
N-valued, then M’ is N-valued (cf. 4.6). This together with 4.8 enable us to obtain more

examples of N-valued monoids.

Proposition 4.9. Let R be a semiring and M a monoid. If R and M are both N-valued,

then so is the monoid semiring R[M]. O
From 4.8 and 4.9 we get the following corollaries.

Corollary 4.10. Let R be an N-valued semiring and G an arbitrary group. Then R[G] is

an N-valued semiring. [

Corollary 4.11. Let R be an N-valued semiring and E be either a submonoid of a free

monoid, or a submonoid of a free abelian monoid. Then R[E] is an N-valued semiring. [
4.12. Let R be a semiring with an N-valuation v : R — N, and let F(T) be a free
R-semimodule on a set 7. Then [ : F(T) — N defined by

z(zm) :U<Z7”t)

teT teT

satisfies the following conditions:
(i) l(a+b) >1(b) for all a € F(T)\{0} and b € F(T);

(ii) I(rb) > I(b) for all r € R\(U(R)U{0}) and b € F(T)\{0};

(iii) I(rb) =1(b) for all r € U(R) and b € F(T).
(One may say that [ is an N-valuation of the R-semimodule F(T").) As an immediate
consequence of (i), (ii) and (iii) we have:

(iv) If a = ria1 + -+ + ryam, r1,-..,'m € R, a1,...,a, € F(T), m > 1, and
riay #0,...,rma, # 0, then {(a) > l(a;), j=1,...,m.

11



Now we are ready to prove the main result and state some of its corollaries.
Theorem 4.13. If R is an N-valued semiring, then any projective R-semimodule is free.

Proof. Let P be anon-trivial projective R-semimodule. Since any projective R-semimodule

is a retract of a free R-semimodule, there is a diagram

where F(T)) is a free R-semimodule on a set T, 7 and j are R-homomorphisms, and 77j = 1.
Clearly, in addition, one may assume that j is an inclusion and that 7 (t) # 0 for any t € T'.

We show that the set
S={seT|s=rn(t) forsome t €T and r € U(R)}

is an R-basis of P. Obviously, since S C T and 7(T) is a set of R-generators for the

R-semimodule P, it suffices to see that for any t € T, w(t) = >_ rls, rt € R.
ses
As R is an N-valued semiring, there is, as noted above, a function [ : F(T) — N

satisfying 4.12(i)—(iv). The function [ and the set m(7T") uniquely determine a strictly

increasing (finite or infinite) sequence
n<ng < oo <N < Njpg1 < -+ -

of positive integers as follows. A positive integer n is a term of this sequence if and only if
there exists t € T with [(7(t)) = n (in view of 4.12(i), [(a) > 0 whenever a # 0). Next, for

any t € T', one has the representation of 7(t) by the R-basis 71"
mt)=rity+ -kl by, vt € RY ty, .t €T (%)
Applying 7 to (*) and using 2.1 and 4.2(b), we obtain
m(t) =rir(t) + -+l w(tn), rint) #0,... 0l w(t,) # 0. (xx)

Let (%) be the representation of 7(t) with I(7(t)) = ny. Then m = 1 and r} € U(R).
Indeed, when m > 1 or v} & U(R), we get, by (xx) and 4.12(ii),(iv), that ny = I(7(t)) >
[(m(t1)), contradicting ny = min{l(n(t)) |t € T}. Thus, if I(7(t)) = ny then = (t) = rs,
r € U(R), s € S. This suggests to continue the proof by induction on k. Assume that

12



for any 7 € T with {(7(7)) < ny one has 7(7) = > rls, and let (*) be the representation
ses

of 7(t) with I(7(t)) = ngy1. I m = 1 and v} € U(R), then w(t) = rs, where r = 7 and

s =1t € S. Suppose m > 1 or v & U(R). It then follows from (xx) and 4.12(ii),(iv)

that I(w(¢)) > l(n(t;)), 7 = 1,...,m. That is, I(n(¢;)) < ng, j = 1,...,m. Hence, by

the induction assumption, 7 (t;) = > rﬁj)s, j = 1,...,m. Consequently, since 7(t) =
ses

> rhw(t;), one has w(t) = > (> 7‘?7’@)5. O

j=1 ses j=1

Corollary 4.14 ([3]). Any projective N-semimodule (i.e., any projective abelian monoid)
is free. O

Proposition 4.9 and Theorem 4.13 yield

Corollary 4.15. If R is an N-valued semiring and M an N-valued monoid, then any

projective R[M|-semimodule is free. O
This theorem together with Corollary 4.10 gives

Corollary 4.16. Let R be an N-valued semiring and G an arbitrary group. Then any

projective R[G]-semimodule is free. O
In particular, we have

Corollary 4.17. For any group G, all projective N|G|-semimodules are free. [
Theorem 4.13 and Corollary 4.11 give

Corollary 4.18. Let R be an N-valued semiring and suppose that E is either a submonoid
of a free monoid, or a submonoid of a free abelian monoid. Then any projective R[FE]-

semimodule is free. ]
As a special case of 4.18 we single out

Corollary 4.19. For any N-valued semiring R the classes of projective and free semi-
modules over the polynomial semiring R[x1,...,x,| coincide. In particular, all projective

Nlz1, ..., x,]-semimodules are free. O

13



5 The Grothendieck Group of
an N-Valued Semiring

In this section, using Theorem 4.13, we calculate the Grothendieck group KyR of an N-

valued Semiring R.

5.1. Let R be a semiring without zero divisors and with U(R, +,0) = 0. Ifry, ... 7,7}, ..., 7]

n

are nonzero elements of R, then rr] 4+ -+ r,r., # 0.

Proposition 5.2. Let R be a semiring without zero divisors and with U(R,+,0) =0, and
suppose that 1 is additively irreducible, i.e., whenever r +r' =1, r,v’ € R, one hasr =0
orr’ =0. Suppose further that F is a free R-semimodule and S,T C F are R-bases of F.

Then for any s € S there exists a unique v, € U(R) such that rss € T
Proof. Let sg € S. Represent sy by the R-basis T"
So=rit1+ -+ rpty, 1 #0,..., 1, 0.

On the other hand, for each ¢, 2 = 1, ..., n, one has the representation of ¢; by the R-basis

S:

= Zrﬁl)s, oty = Zré")s.

seS s€sS
So we have
50 = Z(mg” + o rriMs,
sSES
whence
rr® ™ =10 and D 4 e =0 for all s # s

From the latter we conclude that

r) =0,...,7"M =0 for all s€ S\{so}

s

since r1 # 0,...,r, # 0, U(R,4+,0) = 0 and R is a zero-divisor-free semiring. Conse-
quently,

t, = Tgi)so, oty = ng)so,
whence rgé) #0,... ,rgg) # 0.

14



As noted above 7"171%) + -+ rnrgg) = 1. Suppose n > 1. Then, by 5.1, mﬁé) # 0 and

rgrg? +e 4 angg) = 0, a contradiction to our assumption that 1 is additively irreducible.

Hence n = 1. So, in fact, s = rit;. This together with ¢t; = rg(l,)so gives sg = rlrg)so

and t; = rg(l))rltl, whence rlrgé) = 1 and rgé)rl = 1. Thus we have 71%)50 =t € T and

rgé) € U(R). As T is an R-basis of F, the uniqueness of r, is obvious. O

Corollary 5.3. Let R, F, S, and T be as in 5.2. Then card(S) = card(T).

Proof. For any s € S there exists, by 5.2, a unique ry € U(R) with rgs € T. Define
6:S — T by 0(s) = rss. Since S is an R-basis of F, § is one-to-one. Let t € T. By 5.2,
there exists a unique r, € U(R) such that 7t = s € S. Clearly, 7, = r; '. Hence 6(s) = t.
Thus 6 is onto. L

Let R be a semiring. Recall [8] the construction of KoR. Let P(R) denote the class of
all finitely generated projective R-semimodules and let (P) denote the isomorphism class
of P € P(R). KR is the abelian group with generators (P), P € P(R), and relations
(P) + (P) = (P ® Py, P, P, € P(R).

It was shown in [8] that KyN is the infinite cyclic group generated by class(N). The

following statement generalizes this result to N-valued semirings.

Proposition 5.4. For any N-valued semiring R, KoR is the infinite cyclic group generated
by class(R).

Proof. Let k, k' € N. By 5.3 and 4.2, R is isomorphic to R¥ if and only if k = &’. That
is, (R*) = (R¥) iff k = K. From this and Theorem 4.13 we have KoR = F/H, where
F is the free abelian group generated by (R),(R?),...,(R"),..., and H the subgroup
of F generated by all elements of the form (R™) 4+ (R") — (R™*"), m,n > 0. Clearly,
k - class(R) = class(R*), k € N. Hence KyR is a cyclic group generated by class(R). It
then remains to prove that k - class(R) = 0 implies & = 0. Let Z be the additive group
of integers and # : F — Z the homomorphism defined by §((R*)) = k. Assume that
k- class(R) = 0, i.e., class(R*) = 0. Then
(R) =D ai((R™) + (R™) = (R™*™)), a; € Z.

Applying 0 to this, we get k = 0. O]
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6 Irreducible elements

In this section we show that Theorem 4.13 can be proved using only (i) and (ii) of 4.1.

Definition 6.1. A non-zero element of an R-semimodule A is said to be R-irreducible if
the following conditions are satisfied:
(i) w is additively irreducible, that is, whenever u = a+b, a,b € A, one hasa =0 orb = 0.

(ii) whenever w =ra, a € A, r € R, one has r € U(R).
The set of all R-irreducible elements of an R-semimodule A will be denoted by Ir(A).

Proposition 6.2. let R be a semiring and v : R — N a function satisfying (i) and
(ii) of 4.1. Suppose further that F(T') is a free R-semimodule on a set T. Then any
R-subsemimodule A of F(T) is generated by Ir(A).

Proof. Definel: A — N by

(O rt)=v(> ).

teT teT

Clearly,
(11) i(a +b) > I(b) for all a € A\ {0} and b € A.
and
(12) l(ra) > l(a) for all r € R\ (U(R)U{0}) and a € A\ 0.
(Note that ra = 0 implies r = 0 or a = 0.) The function ! : A — N uniquely determines

a strictly increasing sequence

Ny <ng < oo < Npp < Nppyq < -+ -

of positive integers as follows. A positive integer n is a term of this sequence if and only if
there exists a € A, a # 0, with I(a) = n. It immediately follows from (11) and (12) that any
a € A with l(a) = n; is R-irreducible in A. Assume now that any x € A with I(z) < ng
has a representation of the form
r = Ty, Ty € R,
u€lg(A)

and take any a € A with [(a) = ng4q1. If a € Ig(A), there is nothing to prove. Suppose
that a ¢ Ig(A). If 6.1(i) does not hold, then a = b+ ¢, b,c € A, b # 0 a # 0. By (11),
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[(b) < l(a) and I(c) < l(a). That is, {(b) < ng and I(c) < ng. Therefore by the induction

assumption,

/ " / /"
b= g r,u, C= g Ty, Ty,Ty € R

UEIR(A) ’LLEIR(A)

whence

a = r +ru.
>+

UGIR(A)
If 6.1 (ii) does not hold for a, then a = rd, d € A, r € R\ U(R). This by (12), gives

I[(d) < l(a). That is {(d) < ny. Consequently, by the induction assumption,

d= Z rult, Ty € R,

UEIR (A)

whence

a= Z (rry)u

’lLEIR(A)

]

Proposition 6.3. Let R be a semiring with U(R,+,0) = 0 and without zero devisors
and let P be a projective R-semimodule. If P is generated by Ir(P), then P is a free

R-semimodule.

Proof. There is a diagram

where F'(T)) is a free R-semimodule on a set T, w and j are R-homomorphisms, and 7j = 1.
In addition, one may assume that j is an inclusion and that 7(t) # 0 for any ¢t € T'. Take

any u € Ir(P) and represent it by the R-basis 7"
u:T1t1+"'+Tntn, tlu"' 7tn ET: T, Tn GR\{O}

whence

u=rm(t1) + -+ rpm(ts).

This implies n = 1 and r € U(R) since R is a zero-devisor-free semiring, U(R, +,0) = 0

1

and v € Igr(P). Hence u = rity, ie., t; = r; u € P. Consequently, P is a free R-

semimodule over the set

17



{t eT|t=ru for some u € Iz(P) and r € U(R)}

Propositions 6.2 and 6.3 give

Corollary 6.4. Let R be a semiring and v : R — N a function satisfying (i) and (ii) of

4.1. Then any projective R-semimodule is free.

Proof. 1t suffices to note that U(R, +,0) = 0 and R is a zero-devisor-free semiring (see the

proofs of 4.2(a) and 4.2(b), respectively).
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