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1 Introduction

Numerous investigations on freeness of projective modules over rings have led to many

remarkable results. It suffices to mention the Quilen-Suslin theorem confirming Serre’s

famous conjecture on coincidence of the classes of free and projective modules over poly-

nomial rings with coefficients in a field. At the same time there are only few results

which deal with the problem on freeness of projective semimodules over semirings. In [7]

O. Sokratova proved that for any nonzero commutative, additively idempotent semiring S,

free S-semimodules constitute a proper subclass of the class of projective S-semimodules.

Later Y.Katsov [4] extended this result to additively regular semirings with non-empty sets

of characters. As a consequence of the latter, he showed that the classes of projective and

free semimodules over the polynomial semiring R[x1, x2, . . . , xn] over an additively regular

division semiring R coincide if and only if R is a field. In Section 3 of this work the proofs

of the Katsov’s results are presented.

Next, It is known that all projective semimodules over the semiring N of nonnegative

integers, i.e., all projective abelian monoids are free. Recently, in [5], A. Patchkoria in-

troduced semirings with valuations in nonnegative integers and proved that all projective

semimodules over them are free. Among other consequences of this theorem, he obtained

that if E is either a group, or a submonoid of a free monoid, or a submonoid of a free abelian

monoid, then the classes of projective and free semimodules over the monoid semiring of

E with coefficients in N coincide. Section 4 is concerned with these results.

In Section 5, using the aforementioned theorem of Patchkoria, we calculate the Grothen-

dieck group K0R for any semiring R with valuations in nonnegative integers.

Finally, in Section 6 we give some strengthening of the main theorem of [5] about

coincidence of the classes of projective and free semimodules over semirings with valuations

in nonnegative integers.
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2 Preliminaries

A semiring R = (R,+, 0, ·, 1) is an algebraic structure, where (R,+, 0) is an abelian monoid,

(R, ·, 1) is a monoid and

r · (r′ + r′′) = r · r′ + r · r′′,

(r′ + r′′) · r = r′ · r + r′′ · r,

r · 0 = 0 · r = 0

for all r, r′, r′′ ∈ R. To avoid trivial exceptions, we assume that 1 6= 0. A map ϕ : R −→ R′

between semirings R and R′ is called a semiring homomorphism if ϕ : (R,+ , 0) −→

(R′,+ , 0) and ϕ : (R, · , 1) −→ (R′, · , 1) are monoid homomorphisms.

Let R be a semiring. Recall that an abelian monoid M = (M,+, 0) together with a

map R×M −→M , written (r,m) 7→ rm, is called a (left) R-semimodule if

r(m+m′) = rm+ rm′,

(r + r′)m = rm+ r′m,

(r · r′)m = r(r′m),

1m = m, 0m = 0

for all r, r′ ∈ R and for all m,m′ ∈M . Right semimodules over R are similarly defined.

A map f : A −→ B between R-semimodules A and B is called an R-homomorphism if

f(a + a′) = f(a) + f(a′) and f(ra) = rf(a) for all a, a′ ∈ A and r ∈ R. It is obvious that

any R-homomorphism carries 0 into 0.

A subset T of an R-semimodule A is a set of R-generators for A if every element of A

can be written as a finite sum
∑
riti, where ri ∈ R and ti ∈ T . A is a free R-semimodule

on T , or T is an R-basis of A, if each element a of A has a unique representation of the

form a =
∑
t∈T

rtt, called the representation of a by the R-basis T , where rt ∈ R and all but

a finite number of the rt are zero.

Proposition 2.1. Let R be a semiring without zero divisors and F a free R-semimodule.

If rw = 0, r ∈ R, w ∈ F , then r = 0 or w = 0.
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An R-semimodule P is called projective if, for each surjective R-homomorphism τ :

B −→ C and each R-homomorphism f : P −→ C, there is an R-homomorphism f ′ :

P −→ B such that f = τf ′.

Let M denote the variety of abelian monoids, and MR and RM be the categories of

right and left semimodules, respectively, over a semiring R. The tensor product bifunctor

− ⊗ − : MR ×RM → M on a right semimodule A ∈ MR and a left semimodules

B ∈R M can be described as the factor monoid F/σ of the free abelian monoid F ∈ M,

generated by the cartesian product A×B, factorized with respect to the congruance σ on

F generated by all ordered pairs having the form

〈(a1 + a2, b), (a1, b) + (a2, b)〉, 〈(a, b1 + b2), (a, b1) + (a, b2)〉

and

〈(ar, b), (a, rb)〉, with a1, a2 ∈ A, b1, b2 ∈ B and r ∈ R.

Thus, A ⊗R B = F/σ, uω = f : A × B −→ A ⊗R B = F/σ (where ω is the canonical

inclusion of A × B into F , and u : F −→ F/σ the canonical epimorphism) is an initial

object in the category bih(A,B) of bihomomorphisms from A×B; and A⊗RB is generated

by the elements f(a× b) def
= a⊗ b with a ∈ A and b ∈ B.

Now, suppose that R is a semiring andM an arbitrary, multiplicatively written, monoid.

The free R-semimodule R[M ] generated by the elements x ∈M consists of the finite sums∑
x∈M

rxx with coefficients rx ∈ R. The product in M induces a product

∑
x∈M

rxx ·
∑
y∈M

r′yy =
∑
x,y∈M

(rxr
′
y)xy

of two such elements, and makes R[M ] a semiring, called the monoid semiring of M with

coefficients in the semiring R.

Next, we say that an element m of monoid M is regular if m = mxm for some x ∈M ;

M is regular if all its elements are regular. If S is a monoid and for some a, b ∈ S we

have a = aba and b = bab, then we say that b is an inverse of a. A monoid where every

element has a unique inverse is an inverse monoid. For an abelian monoid M both notions

coincide, i.e., M is regular iff it is inverse ([1, Theorem 1.17]).

Recall that due to [1, Theorem 4.11] (see also [6, Theorem II.2.6]) each additive abelian

inverse monoidM = (M,+, 0) is isomorphic to its Clifford representationR = [Y ;Gα, ϕα,β],
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where Y is semilattice, Gα is an abelian group for each α ∈ Y , and for each pair α, β ∈

Y α ≤ β, ϕα,β : Gα → Gβ are group homomorphisms. All homomorphisms of abelian

Clifford monoids [Y ;Gα, ϕα,β] are described by the following proposition.

Proposition 2.2. ([6, Proposition II.2.8]) Consider the Clifford monoids R = [Y ;Gα, ϕα,β]

and S = [Z;Hα, ψα,β]. Let η : Y −→ Z be a homomorphism, and for each α ∈ Y , let

χα : Gα −→ Hαη be a homomorphism such that ψαη,βηχα = χβϕα,β for any α ≤ β. Then

the function χ defined on R by χ : a → aχα if a ∈ Gα, is a homomorphism of R into S.

Conversely, every homomorphism R into S can be so constructed.
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3 Projective semimodules over additively regular

semirings with non-empty sets of characters

The results of this section are due to Y.Katsov [4].

Let π : R −→ S be a homomorphism of semirings. Any right S-semimodule X may

be considered as a right R-semimodule, denoted π#X, by defining x · r = xπ(r) for any

x ∈ X, r ∈ R. One can easily see that the assignments X −→ π#X are obviously

raised to the restriction functor π# : MS −→ MR. On the other hand, thinking of S

as a left R-semimodule (r · s = π(r)s, r ∈ R, s ∈ S), we have the extension functor

π#
def
= −⊗R S :MR −→MS. As is shown in [4], π# is a left adjoint to π#.

Before proving the main results of this section we state the following four propositions

of [4].

Proposition 3.1. The extension functor π# : MR →MS preserves the subcategories of

free, projective, finitely generated free and finitely generated projective semimodules, and

all colimits.

Proposition 3.2. If π : R −→ S is a surjective semiring homomorphism, then the

functors π#π
# and IdMS

: MS −→MS are naturally isomorphic.

A semiring R = (R,+, 0, ·, 1) is additively regular if (R,+, 0) is a regular monoid. Let R

be an additively regular semiring and [Y ;Gα, ϕα,β] the Clifford representation of (R,+, 0),

i.e., (R,+, 0) = [Y ;Gα, ϕα,β]. Then Gr will denote the abelian group of this representation

that contains the element r ∈ R, and 0r ∈ Gr the zero (additive identity) of the group Gr.

A semiring R is additively idempotent if (R,+, 0) is an idempotent monoid, i.e., if for

any r ∈ R, we have r + r = r.

Proposition 3.3. Let R be an additively regular semiring and R0 = {0r| r ∈ R}. Then,

with respect to the operations defined on R, R0 becomes an additively idempotent semir-

ing with 00 and 01 as the additive and multiplicative identities, respectively. Also, the

multiplication of elements of R by 01 produces the surjective semiring homomorphism

01 : R −→ R0, and hence, the restriction functor 0#
1 :MR0 −→MR.

Proposition 3.4. The restriction functor 0#
1 :MR0 −→MR preserves (finitely generated)

projective R0-semimodules.
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Let 2 = {0, 1} be the boolean semiring (1 + 1 = 1). A character of a semiring R is a

homomorphism of semirings from R to 2 [9].

Now we can prove the following theorems (the proofs are taken from [4] without any

changes).

Theorem 3.5. Let R be an additively regular semiring with non-empty set of characters.

Then, in the category MR of right R-semimodules, the full subcategories of free (finitely

generated free) and projective (finitely generated projective) (right) R-semimodules do not

coincide. The left-sided analogue of this statement is also valid.

Proof. First we look at the case when R is an additively idempotent semiring, and suppose,

in MR, the full subcategories of free (finitely generated free) and projective (finitely gen-

erated projective) R-semimodules coincide. Since any additively idempotent semiring is

obviously additively regular, we may assume that R is an additively regular semiring which

is not a ring, and xR⊕ yR (here and below, where context makes it clear, R is thought as

a right R-semimodule) is a free two-generated R-semimodule, i.e., xR ∼= R ∼= yR. Then,

consider the two R-homomorphisms

R
α

⇒
β
xR⊕ yR

that are defined on the generator 1 ∈ R by α(1) = (0x1 , 0
y
1), β(1) = (0x, 0

y
1), where 0x, 0y are

zeros of xR and yR, and 0x1 , 0
y
1 are zeros of their abelian groups Gx

1 ⊂ xR and Gy
1 ⊂ yR,

respectively. (Since R is not a ring, clearly 0x1 6= 0x and 0y1 6= 0y.) Now, if τ denotes theMR-

congruence on xR⊕ yR generated by 〈(0x1 , 0
y
1), (0x, 0

y
1)〉, and γ : xR⊕ yR −→ (xR⊕ yR)/τ

its canonical surjection, we obtain the exact sequence

R
α

⇒
β
xR⊕ yR γ−→ (xR⊕ yR)/τ (1)

in MR (meaning that γ is a coequalizer of α and β).

Let ρ : xR ⊕ yR −→ xR ⊕ yR be the homomorphism defined on the generators

(1x, 0y), (0x, 1
y) of xR⊕yR by ρ(1x, 0y) = (0x1 , 0y) and ρ(0x, 1

y) = (0x1 , 0
y
1). As ρ is also a ho-

momorphism of additively regular monoids, and (1x, 0y) and the idempotent (0x1 , 0y) belong

to the same abelian group in the monoid xR⊕yR , by Proposition 2.2 ρ(1x, 0y) = ρ(0x1 , 0y);

similarly, ρ(0x, 1
y) = ρ(0x, 0

y
1).
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At this point of the proof, we will use the additive idempotentness of the semiring

R; thus, 1x = 0x1 and 1y = 0y1, and, therefore, γ(1x, 0y) = γ(0x1 , 0y), and γ(0x, 1
y) =

γ(0x, 0
y
1). Then, ρα(1) = ρ(0x1 , 0

y
1) = ρ(0x1 , 0y) + ρ(0x, 0

y
1) = (0x1 , 0y) + (0x1 , 0

y
1) = (0x1 , 0

y
1),

and ρβ(1) = ρ(0x, 0
y
1) = (0x1 , 0

y
1). Hence, there exists µ : (xR ⊕ yR)/τ −→ xR ⊕ yR such

that µγ = ρ and, therefore, γµγ = γρ; moreover, since γ(1x, 0y) = γ(0x1 , 0y) = γρ(1x, 0y)

and γ(0x, 1
y) = γ(0x, 0

y
1) = γ(0x1 , 0

y
1) = γρ(0x, 1

y), one has γρ = γ. Thus, γµ = 1(xR⊕yR)/τ ,

whence (xR ⊕ yR)/τ is a projective MR-semimodule, and therefore, according to our

assumption, is free.

Then, since there exists a surjective semiring homomorphism π : R −→ 2, applying the

extension functor π# :MR −→M2 to the exact sequence (1), by Proposition 3.1, in M2

we obtain the exact sequence

R⊗R 2
α⊗1
⇒
β⊗1

(xR⊕ yR)⊗R 2
γ⊗1−→ ((xR⊕ yR)/τ)⊗R 2, (2)

where the coequalizer ((xR⊕ yR)/τ)⊗R 2 is a free M2-semimodule. Again using Propo-

sition 3.1, one may readily conclude that the exact sequence (2), in fact, can be rewritten

as the following exact sequence

2
α∗

⇒
β∗

(x2⊕ y2)
γ∗−→ (x2⊕ y2)/τ ∗, (3)

where α∗ and β∗ are completely defined by the maps 1 7−→ (x, y) and 1 7−→ (0, y), respec-

tively; τ ∗ is the congruence on x2 ⊕ y2 generated by the pair 〈(x, y), (0, y)〉, and γ∗ the

canonical surjection. However, from the latter it is easy to see that (x2⊕y2)/τ ∗ is isomor-

phic to the three -element chain (0, 0) < (x, 0) < (x, y) in x2⊕ y2, which obviously is not

a free 2-semimodule. Thus, we have established the theorem for an additively idempotent

semiring R with non-empty set of characters.

Now let R be an additively regular semiring, and π : R −→ 2 a surjective semiring

homomorphism. Then, using Proposition 2.2, one can easily see that that the restriction

of π on the additively idempotent semiring R0 gives the surjective homomorphism π|R0 :

R0 −→ 2. Therefore, there exists a finitely generated projective (right) R0-semimodule

P that is not free in MR0 . Then, by applying Proposition 3.3 and 3.2, one obtains that

P ∼= 01#0#
1 P in MR0 ; whence by Propositions 3.4 and 3.1, we conclude that 0#

1 P ∈ MR
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is a finitely generated projective, but not free, (right) R-semimodule.

The proof of the left-sided analogue of the statement is similar.

A semiring R is a division semiring if all its nonzero elements are multiplicatively

invertible; and a semifiled is a commutative division semiring (see [2]).

Theorem 3.6. The classes of projective and free right (left) semimodules over the polyno-

mial semiring R[x1, x2, ..., xn] over an additively regular division semiring R coincide iff R

is a field.

Proof. It suffices to show that if R is an additively regular division semiring that is not

a ring, then in the category of R[x1, x2, ..., xn]-semimodules the category of free (finitely

generated free) semimodules is a proper subcategory of the category of projective (finitely

generated projective) semimodules.

Thus, let R be an additively regular division semiring that is not a ring. Then, the zeros

0 ∈ R and 01 ∈ G1 ⊂ R are different; hence, there exists 0−11 such that 010
−1
1 = 0−11 01 = 1.

However, the multiplication by 0−11 determines the endomorphism − · 0−11 : (R,+) −→

(R,+) of the additive reduct (R,+) of the additively regular semiring R. Therefore by

Proposition 2.2, one has, 010
−1
1 = 01 = 1. Hence 1 is an idempotent in (R,+), and R is an

additively idempotent semiring.

Next, if a, b ∈ R \ {0} one may say that (a+ b) ∈ R \ {0}, as well. Indeed, if a+ b = 0,

then (a + b)a−1 = aa−1 + ba−1 = 1 + ba−1 = 0; whence any element c ∈ R is additively

invertible since c+ cba−1 = c(1 + ba−1) = 0, what contradicts the fact that R is a semiring

which is not a ring. From this observation, we conclude that there exists the surjective

homomorphism χ : R −→ 2 that moves R \ {0} to 1 ∈ 2. Therefore, combining the

obvious projection ν : R[x1, x2, ..., xn] −→ R onto the constant terms with χ, one obtains

the surjective homomorphism π : R[x1, x2, ..., xn] −→ 2. Now, since R[x1, x2, ..., xn] is

clearly an additively regular semiring, by Theorem 3.5, we end the proof.
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4 Projective semimodules over semirings with

valuations in nonnegative integers

The definitions, examples and results (and the proofs) of this section are taken from [5].

The following standard notations are used: if M is a monoid then U(M) is the group of

all invertible elements of M ; if R is a semiring then U(R,+ , 0) is the group of all additively

invertible elements of R, U(R) the group of all multiplicatively invertible elements of R,

and R∗ = R \ {0}.

The semiring of all non-negative integers is denoted by N.

Definition 4.1. Let R be a semiring. A function v : R −→ N is called a (left) N-valuation

of R if the following conditions hold:

(i) v(r + r′) > v(r′) whenever r 6= 0;

(ii) v(rr′) > v(r′) whenever r 6= 0, r′ 6= 0 and r 6∈ U(R);

(iii) v(rr′) = v(r′) for all r ∈ U(R) and all r′ ∈ R.

It immediately follows that v(r) = 0 implies r = 0, and v(r) = 1 implies r ∈ U(R). At

the same time v need not satisfy v(0) = 0 or v(r) = 1 for r ∈ U(R) (see 4.3). Also note

that if a semiring admits an N-valuation then any multiplicatively left (right) invertible

element in it is in fact multiplicatively invertible.

A semiring with an N-valuation is called an N-valued semiring.

Proposition 4.2. Let R be an N-valued semiring. Then:

(a) U(R,+ , 0) = 0.

(b) R is a semiring without zero divisors.

(c) If r + r′ = 1, r, r′ ∈ R, then r = 0 or r′ = 0.

(d) R\U(R) is a two-sided ideal of R, i.e., R is a local semiring.

Proof. (a) Suppose U(R,+ , 0) 6= 0. That is, r + r′ = 0 for some r, r′ ∈ R∗. Then

v(0) = v(r + r′) > v(r′) = v(r′ + 0) > v(0), a contradiction. Hence U(R,+ , 0) = 0.

(b) Assume rr′ = 0 for some r, r′ ∈ R∗. Then v(0) = v(rr′) > v(r′) = v(r′ + 0) > v(0),

a contradiction. Hence R is a zero-divisor-free semiring.
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(c) Let r + r′ = 1 for some r, r′ ∈ R∗. Then v(1) = v(r + r′) > v(r′) = v(r′ · 1) ≥ v(1),

a contradiction. Consequently, r + r′ = 1, r, r′ ∈ R, implies r = 0 or r′ = 0.

(d) It suffices to show that J : = R\U(R) is a left ideal.(Indeed, suppose J is a left

ideal. Let α ∈ J , β ∈ R and αβ 6∈ J . Then αβγ = 1 and βγ 6∈ J for some γ ∈ R,

whence α ∈ U(R), a contradiction. Thus J is a two-sided ideal.) Let r1, r2 ∈ J and

r1 + r2 6∈ J . Then there exists r ∈ U(R) such that r1r + r2r = 1. This gives, by (c),

that r1r = 0 or r2r = 0. Hence r2 ∈ U(R) or r1 ∈ U(R), contrary to r1, r2 ∈ J . Thus

J is a submonoid of the monoid (R,+ , 0). Now suppose ρ ∈ R, ω ∈ J , and ρω ∈ U(R).

Then v(1) = v(ρω · 1) = v(ρω) > v(ω) = v(ω · 1) > v(1), a contradiction. Thus J is a left

ideal.

Example 4.3. N is evidently N-valued: v = 1 : N −→ N. Furthermore, a function

v : N −→ N is an N-valuation if and only if it is a strictly increasing function.

Example 4.4. Let R be the field of real numbers. Then {0, 1} ∪ {r ∈ R | r ≥ 2} is a

subsemiring of R, and the greatest integer function [ ] : {0, 1} ∪ {r ∈ R | r ≥ 2} −→ N is

an N-valuation.

Example 4.5. For any semiring R,

R′ =
{

(r, n) ∈ R×N |n ≥ 2
}
∪
{

(r, 1) ∈ R×N | r ∈ U(R)
}
∪
{

(0, 0)
}

is an N-valued subsemiring of R× N. Indeed, v : R′ −→ N, v(r, n) = n, is an N-valuation.

This and many more examples of N-valued semirings can be drawn from

Proposition 4.6. Let R be an N-valued semiring and ϕ : R′ −→ R a homomorphism of

semirings such that ker(ϕ) : = {r′ ∈ R′|ϕ(r′) = 0} = 0 and ϕ−1(U(R)) = U(R′). Then R′

is an N-valued semiring.

Proof. If v : R −→ N is an N-valuation, then so is vϕ : R′ −→ N.

Note that rings as well as semifields do not admit any N-valuations (see 4.2(a) and

4.2(c)).

Definition 4.7. We say that a monoid M is N-valued if there exists a function p : M −→

N, called a (left) N-valuation of M , such that

10



(i) p(xy) > p(y) for all x ∈M\U(M) and all y ∈M ;

(ii) p(xy) = p(y) for all x ∈ U(M) and all y ∈M .

Example 4.8. Any group G is evidently N-valued: p(g) = 0 for all g ∈ G. Further, let

F (T ) be a free monoid on a set T . The function deg : F (T ) −→ N assigning to x ∈ F (T )

its degree (note that any free monoid has a unique basis) is an N-valuation. Clearly, the

restriction of deg to any submonoid of F (T ) is also an N-valuation. Analogously, free

abelian monoids and their submonoids are N-valued monoids.

If ψ : M ′ −→ M is a homomorphism of monoids with ψ−1(U(M)) = U(M ′) and M is

N-valued, then M ′ is N-valued (cf. 4.6). This together with 4.8 enable us to obtain more

examples of N-valued monoids.

Proposition 4.9. Let R be a semiring and M a monoid. If R and M are both N-valued,

then so is the monoid semiring R[M ].

From 4.8 and 4.9 we get the following corollaries.

Corollary 4.10. Let R be an N-valued semiring and G an arbitrary group. Then R[G] is

an N-valued semiring.

Corollary 4.11. Let R be an N-valued semiring and E be either a submonoid of a free

monoid, or a submonoid of a free abelian monoid. Then R[E] is an N-valued semiring.

4.12. Let R be a semiring with an N-valuation v : R −→ N, and let F (T ) be a free

R-semimodule on a set T . Then l : F (T ) −→ N defined by

l
(∑
t∈T

rtt
)

= v
(∑
t∈T

rt

)
satisfies the following conditions:

(i) l(a+ b) > l(b) for all a ∈ F (T )\{0} and b ∈ F (T );

(ii) l(rb) > l(b) for all r ∈ R\(U(R) ∪ {0}) and b ∈ F (T )\{0};

(iii) l(rb) = l(b) for all r ∈ U(R) and b ∈ F (T ).

(One may say that l is an N-valuation of the R-semimodule F (T ).) As an immediate

consequence of (i), (ii) and (iii) we have:

(iv) If a = r1a1 + · · · + rmam, r1, . . . , rm ∈ R, a1, . . . , am ∈ F (T ), m > 1, and

r1a1 6= 0, . . . , rmam 6= 0, then l(a) > l(aj), j = 1, . . . ,m.
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Now we are ready to prove the main result and state some of its corollaries.

Theorem 4.13. If R is an N-valued semiring, then any projective R-semimodule is free.

Proof. Let P be a non-trivial projective R-semimodule. Since any projective R-semimodule

is a retract of a free R-semimodule, there is a diagram

F (T )
π //

P? _

j
oo ,

where F (T ) is a free R-semimodule on a set T , π and j are R-homomorphisms, and πj = 1.

Clearly, in addition, one may assume that j is an inclusion and that π(t) 6= 0 for any t ∈ T .

We show that the set

S =
{
s ∈ T | s = rπ(t) for some t ∈ T and r ∈ U(R)

}
is an R-basis of P . Obviously, since S ⊂ T and π(T ) is a set of R-generators for the

R-semimodule P , it suffices to see that for any t ∈ T , π(t) =
∑
s∈S

rtss, r
t
s ∈ R.

As R is an N-valued semiring, there is, as noted above, a function l : F (T ) −→ N

satisfying 4.12(i)–(iv). The function l and the set π(T ) uniquely determine a strictly

increasing (finite or infinite) sequence

n1 < n2 < · · · < nk < nk+1 < · · ·

of positive integers as follows. A positive integer n is a term of this sequence if and only if

there exists t ∈ T with l(π(t)) = n (in view of 4.12(i), l(a) > 0 whenever a 6= 0). Next, for

any t ∈ T , one has the representation of π(t) by the R-basis T :

π(t) = rt1t1 + · · ·+ rtmtm, rt1, . . . , r
t
m ∈ R∗, t1, . . . , tm ∈ T. (∗)

Applying π to (∗) and using 2.1 and 4.2(b), we obtain

π(t) = rt1π(t1) + · · ·+ rtmπ(tm), rt1π(t1) 6= 0, . . . , rtmπ(tm) 6= 0. (∗∗)

Let (∗) be the representation of π(t) with l(π(t)) = n1. Then m = 1 and rt1 ∈ U(R).

Indeed, when m > 1 or rt1 6∈ U(R), we get, by (∗∗) and 4.12(ii),(iv), that n1 = l(π(t)) >

l(π(t1)), contradicting n1 = min{l(π(t)) | t ∈ T}. Thus, if l(π(t)) = n1 then π(t) = rs,

r ∈ U(R), s ∈ S. This suggests to continue the proof by induction on k. Assume that

12



for any τ ∈ T with l(π(τ)) ≤ nk one has π(τ) =
∑
s∈S

rτss, and let (∗) be the representation

of π(t) with l(π(t)) = nk+1. If m = 1 and rt1 ∈ U(R), then π(t) = rs, where r = rt1 and

s = t1 ∈ S. Suppose m > 1 or rt1 6∈ U(R). It then follows from (∗∗) and 4.12(ii),(iv)

that l(π(t)) > l(π(tj)), j = 1, . . . ,m. That is, l(π(tj)) ≤ nk, j = 1, . . . ,m. Hence, by

the induction assumption, π(tj) =
∑
s∈S

r
(j)
s s, j = 1, . . . ,m. Consequently, since π(t) =

m∑
j=1

rtjπ(tj), one has π(t) =
∑
s∈S

( m∑
j=1

rtjr
(j)
s

)
s.

Corollary 4.14 ([3]). Any projective N-semimodule (i.e., any projective abelian monoid)

is free.

Proposition 4.9 and Theorem 4.13 yield

Corollary 4.15. If R is an N-valued semiring and M an N-valued monoid, then any

projective R[M ]-semimodule is free.

This theorem together with Corollary 4.10 gives

Corollary 4.16. Let R be an N-valued semiring and G an arbitrary group. Then any

projective R[G]-semimodule is free.

In particular, we have

Corollary 4.17. For any group G, all projective N[G]-semimodules are free.

Theorem 4.13 and Corollary 4.11 give

Corollary 4.18. Let R be an N-valued semiring and suppose that E is either a submonoid

of a free monoid, or a submonoid of a free abelian monoid. Then any projective R[E]-

semimodule is free.

As a special case of 4.18 we single out

Corollary 4.19. For any N-valued semiring R the classes of projective and free semi-

modules over the polynomial semiring R[x1, . . . , xn] coincide. In particular, all projective

N[x1, . . . , xn]-semimodules are free.

13



5 The Grothendieck Group of

an N-Valued Semiring

In this section, using Theorem 4.13, we calculate the Grothendieck group K0R of an N-

valued Semiring R.

5.1. LetR be a semiring without zero divisors and with U(R,+ , 0) = 0. If r1, . . . , rn, r
′
1, . . . , r

′
n

are nonzero elements of R, then r1r
′
1 + · · ·+ rnr

′
n 6= 0.

Proposition 5.2. Let R be a semiring without zero divisors and with U(R,+ , 0) = 0, and

suppose that 1 is additively irreducible, i.e., whenever r + r′ = 1, r, r′ ∈ R, one has r = 0

or r′ = 0. Suppose further that F is a free R-semimodule and S, T ⊂ F are R-bases of F .

Then for any s ∈ S there exists a unique rs ∈ U(R) such that rss ∈ T .

Proof. Let s0 ∈ S. Represent s0 by the R-basis T :

s0 = r1t1 + · · ·+ rntn, r1 6= 0, . . . , rn 6= 0.

On the other hand, for each i, i = 1, . . . , n, one has the representation of ti by the R-basis

S:

t1 =
∑
s∈S

r(1)s s, . . . , tn =
∑
s∈S

r(n)s s.

So we have

s0 =
∑
s∈S

(r1r
(1)
s + · · ·+ rnr

(n)
s )s,

whence

r1r
(1)
s0

+ · · ·+ rnr
(n)
s0

= 1, and r1r
(1)
s + · · ·+ rnr

(n)
s = 0 for all s 6= s0.

From the latter we conclude that

r(1)s = 0, . . . , r(n)s = 0 for all s ∈ S\{s0}

since r1 6= 0, . . . , rn 6= 0, U(R,+ , 0) = 0 and R is a zero-divisor-free semiring. Conse-

quently,

t1 = r(1)s0 s0, . . . , tn = r(n)s0
s0,

whence r
(1)
s0 6= 0, . . . , r

(n)
s0 6= 0.

14



As noted above r1r
(1)
s0 + · · · + rnr

(n)
s0 = 1. Suppose n > 1. Then, by 5.1, r1r

(1)
s0 6= 0 and

r2r
(2)
s0 + · · ·+ rnr

(n)
s0 6= 0, a contradiction to our assumption that 1 is additively irreducible.

Hence n = 1. So, in fact, s0 = r1t1. This together with t1 = r
(1)
s0 s0 gives s0 = r1r

(1)
s0 s0

and t1 = r
(1)
s0 r1t1, whence r1r

(1)
s0 = 1 and r

(1)
s0 r1 = 1. Thus we have r

(1)
s0 s0 = t1 ∈ T and

r
(1)
s0 ∈ U(R). As T is an R-basis of F , the uniqueness of rs is obvious.

Corollary 5.3. Let R,F, S, and T be as in 5.2. Then card(S) = card(T ).

Proof. For any s ∈ S there exists, by 5.2, a unique rs ∈ U(R) with rss ∈ T . Define

θ : S −→ T by θ(s) = rss. Since S is an R-basis of F , θ is one-to-one. Let t ∈ T . By 5.2,

there exists a unique rt ∈ U(R) such that rtt = s ∈ S. Clearly, rs = r−1t . Hence θ(s) = t.

Thus θ is onto.

Let R be a semiring. Recall [8] the construction of K0R. Let P(R) denote the class of

all finitely generated projective R-semimodules and let 〈P 〉 denote the isomorphism class

of P ∈ P(R). K0R is the abelian group with generators 〈P 〉, P ∈ P(R), and relations

〈P1〉+ 〈P2〉 = 〈P1 ⊕ P2〉, P1, P2 ∈ P(R).

It was shown in [8] that K0N is the infinite cyclic group generated by class〈N〉. The

following statement generalizes this result to N-valued semirings.

Proposition 5.4. For any N-valued semiring R, K0R is the infinite cyclic group generated

by class〈R〉.

Proof. Let k, k′ ∈ N. By 5.3 and 4.2, Rk is isomorphic to Rk′ if and only if k = k′. That

is, 〈Rk〉 = 〈Rk′〉 iff k = k′. From this and Theorem 4.13 we have K0R = F/H, where

F is the free abelian group generated by 〈R〉, 〈R2〉, . . . , 〈Rn〉, . . . , and H the subgroup

of F generated by all elements of the form 〈Rm〉 + 〈Rn〉 − 〈Rm+n〉, m,n > 0. Clearly,

k · class〈R〉 = class〈Rk〉, k ∈ N . Hence K0R is a cyclic group generated by class〈R〉. It

then remains to prove that k · class〈R〉 = 0 implies k = 0. Let Z be the additive group

of integers and θ : F −→ Z the homomorphism defined by θ(〈Rk〉) = k. Assume that

k · class〈R〉 = 0, i.e., class〈Rk〉 = 0. Then

〈Rk〉 =
∑
i

ai
(
〈Rmi〉+ 〈Rni〉 − 〈Rmi+ni〉

)
, ai ∈ Z.

Applying θ to this, we get k = 0.
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6 Irreducible elements

In this section we show that Theorem 4.13 can be proved using only (i) and (ii) of 4.1.

Definition 6.1. A non-zero element of an R-semimodule A is said to be R-irreducible if

the following conditions are satisfied:

(i) u is additively irreducible, that is, whenever u = a+ b, a, b ∈ A, one has a = 0 or b = 0.

(ii) whenever u = ra, a ∈ A, r ∈ R, one has r ∈ U(R).

The set of all R-irreducible elements of an R-semimodule A will be denoted by IR(A).

Proposition 6.2. let R be a semiring and v : R → N a function satisfying (i) and

(ii) of 4.1. Suppose further that F (T ) is a free R-semimodule on a set T . Then any

R-subsemimodule A of F (T ) is generated by IR(A).

Proof. Define l : A→ N by

l(
∑
t∈T

rtt) = v(
∑
t∈T

rt).

Clearly,

(l1) l(a+ b) > l(b) for all a ∈ A \ {0} and b ∈ A.

and

(l2) l(ra) > l(a) for all r ∈ R \ (U(R) ∪ {0}) and a ∈ A \ 0.

(Note that ra = 0 implies r = 0 or a = 0.) The function l : A→ N uniquely determines

a strictly increasing sequence

n1 < n2 < · · · < nk < nk+1 < · · ·

of positive integers as follows. A positive integer n is a term of this sequence if and only if

there exists a ∈ A, a 6= 0, with l(a) = n. It immediately follows from (l1) and (l2) that any

a ∈ A with l(a) = n1 is R-irreducible in A. Assume now that any x ∈ A with l(x) ≤ nk

has a representation of the form

x =
∑

u∈IR(A)

ruu, ru ∈ R,

and take any a ∈ A with l(a) = nk+1. If a ∈ IR(A), there is nothing to prove. Suppose

that a /∈ IR(A). If 6.1(i) does not hold, then a = b + c, b, c ∈ A, b 6= 0 a 6= 0. By (l1),
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l(b) < l(a) and l(c) < l(a). That is, l(b) ≤ nk and l(c) ≤ nk. Therefore by the induction

assumption,

b =
∑

u∈IR(A)

r′uu, c =
∑

u∈IR(A)

r′′uu, r
′
u, r
′′
u ∈ R

whence

a =
∑

u∈IR(A)

(r′u + r′′u)u.

If 6.1 (ii) does not hold for a, then a = rd, d ∈ A, r ∈ R \ U(R). This by (l2), gives

l(d) < l(a). That is l(d) ≤ nk. Consequently, by the induction assumption,

d =
∑

u∈IR(A)

ruu, ru ∈ R,

whence

a =
∑

u∈IR(A)

(rru)u

.

Proposition 6.3. Let R be a semiring with U(R,+, 0) = 0 and without zero devisors

and let P be a projective R-semimodule. If P is generated by IR(P ), then P is a free

R-semimodule.

Proof. There is a diagram

F (T )
π //

P? _

j
oo ,

where F (T ) is a free R-semimodule on a set T , π and j are R-homomorphisms, and πj = 1.

In addition, one may assume that j is an inclusion and that π(t) 6= 0 for any t ∈ T . Take

any u ∈ IR(P ) and represent it by the R-basis T :

u = r1t1 + · · ·+ rntn, t1, · · · , tn ∈ T, r1, · · · , rn ∈ R \ {0}

whence

u = r1π(t1) + · · ·+ rnπ(tn).

This implies n = 1 and r1 ∈ U(R) since R is a zero-devisor-free semiring, U(R,+, 0) = 0

and u ∈ IR(P ). Hence u = r1t1, i.e., t1 = r−11 u ∈ P . Consequently, P is a free R-

semimodule over the set
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{
t ∈ T | t = ru for some u ∈ IR(P ) and r ∈ U(R)

}

Propositions 6.2 and 6.3 give

Corollary 6.4. Let R be a semiring and v : R → N a function satisfying (i) and (ii) of

4.1. Then any projective R-semimodule is free.

Proof. It suffices to note that U(R,+, 0) = 0 and R is a zero-devisor-free semiring (see the

proofs of 4.2(a) and 4.2(b), respectively).
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