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Bayesian philosophy

Steve is very shy and withdrawn, invariably
helpful but with very little interest in people or
in the world of reality. A meek and tidy soul, he
has a need for order and structure, and a
passion for detail.
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Is Steve more likely to be a librarian or a farmer?
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Bayes' rule

» This example is by Daniel Kahneman and Amos Tversky.
People tend to ignore the overall proportion of farmers and
librarians in the general population.

» The correct framework to think about this problem is Bayes'
theorem.

P(E | H) - P(H)
P(E)
This helps to determine the probability of the hypothesis H (Steve is
a librarian) given the evidence E (Steve is very shy and
withdrawn. . .) is true.

» This is one of the most tattooed formulas in mathematics.

P(H|E) =

» To illustrate what the theorem says, it helps to draw a diagram.



Bayes' rule illustrated

H Hypothesis, “Steve
is a librarian”

E Evidence, “Steve is
very shy and
withdrawn. ..’

—H Opposite of our
hypothesis, “Steve

P(E | =H) is a farmer”
P(H)
P(E | H)P(H) P(E | H)P(H)
P(H | E) = P(E | H)P(H)—|- P(E | —\H)P(_'H) - P(E)



Terminology

In order to proceed, we have to learn some terminology from
Bayesian statistics.

P(E | H) - P(H)
P(E)

P(H| E) =

P(H) is called a prior
P(E | H) is called a likelihood
P(H | E) is called a posterior

» So, prior and likelihood are proportional to the posterior.

> Motto of Bayesian statistics: evidence, coming in, should
update our prior beliefs, contrary to establishing completely
new ones.

» This brings us to Bayesian inference.



Bayesian inference

In a nutshell: given a number of data samples (observations) that
follow some distribution, what is the estimate of parameters at play?

Example

Say we are given 50 data samples x1, x, ..., x50. We know that this
data samples are following some exponential distribution ae™?.
What is the estimation of a parameter a? There are at least two
major estimation strategies

» Point estimation. A single best approximation

4 (Xl +X2+"'+X50)_1
50 '
Prior beliefs are not taken into account.

» Interval estimation (or Bayesian inference). We get out a
distribution of a, and we can also take prior beliefs into
account.



Example in detail

First, lets generate 50 random data points (observations) that follow
some exponential distribution.

n = 50 #the number of data points

a = RR.random_element(1,6) #random real number from interval [1,6] used as ay
—parameter

import numpy # import library for random sampling

X = numpy.random.exponential(l/a, n) #generate "n" data points from exponentialy,

"oyt

sdistribution with parameter "a
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Figure: Data points Figure: Histogram



Example in detail

For the sake of it, we find out what the point estimation of the
parameter a. We also print the real value of a.

est = n/sum([X[i] for i in range(n)]) # point estimation of a parameter "a"
print('real value =',a,',','estimation =', est)

real value = 5.22953523145752 , estimation = 5.078818805838824

Step 1

We assume prior distribution of parameter a. Here, say we think it is
distributed according to a normal distribution f with mean 4 and
standard deviation 1. This is my prior.

Step 2

Generate random a's according to the prior distribution.

In our example, let us generate one thousand a's from our normal
distribution f.



Example in detail

k = 1000 #number of random a's

mean = 4

div = 1

A = numpy.random.normal(loc = mean, scale = div, size= k) #generate "k" datay
spoints from mormal distribution

o

Figure: 1000 samples of a parameter from f




Example in detail
Step 3

Compute likelihood times prior L(a;) for each generated a;.

L(a;) = probability of observing xi,...,xs0 (if a = a;) and a = a;
= P(x1,x2,...,x50 | a=a;) x P(a= aj)
=P(xy|a=a)x - xP(xso|a=a;) x Pla= a)
= (a;e” ™ )dx x -+ x (aje” ) dx x f(a;)dx

for s in range(k):
for u in range(n):
P[s,u]l = Alsl*e~(-A[s]*X[ul)*(1/n) #P[i,7] = a_i * e (a_iz_j)*dz

f(x) = (2xpi*div™2)~(-1/2)*e” (- (x-mean) "2/2*div"2) #prior distribution function
for i in range(k):
Pri[i] = (£(A[i1))*(1/k) #prior probablities for each a_i

L[i] = prod([P[i,u] for u in range(n)])*Pri[il] #liklihood,
<P(z/a=a_1)*P(a=a_1)



Example in detail

Step 4

Draw the posterior distribution of a parameter a.
By Bayes' rule

L(a;)
S L(i)

P(a = adj | X1,X2,... 7X50) =

S = sum([L[i] for i in range(k)])
for i in range(k):
Pos[i] = L[il/S # posterior

Plotting the posterior distribution in blue, prior distribution in red
and real value of a in green, we get



Example in detail

Pla=a;|z1,+,250)
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Figure: Prior, posterior and real value of a.



Example in detail
We can also draw the confidence interval.

Pla=a; |y, 50)

os
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Figure: 95% confidence interval



Example in detail
How the number of observed data influence the estimation?

Pla=a; |y, 50)

os

Figure: 10 data samples



Source

From now on, everything we say follows

[§ Jonas Dehning, Johannes Zierenberg, F. Paul Spitzner, Michael
Wibral, Joao Pinheiro Neto, Michael Wilczek, and Viola
Priesemann.

Inferring change points in the spread of COVID-19 reveals the
effectiveness of interventions.
Science 369 (2020), no. 6500.



Bayesian inference for epidemiological parameters

We perform Bayesian inference for the epidemiological parameters of
an SIR model using MCMC sampling (lecture by Ana Dolidze).

The central parameters are (there are others)
P the spreading rate ),
P the recovery rate y,
» the reporting delay D,
» the number of initially infected people .

Informative priors are chosen based on available knowledge for A, p,
and D, and uninformative priors for the remaining parameters.

The informative priors are intentionally kept as broad as possible so
that the data would constrain the parameters.



Recall the SIR model

Disease spreads at rate A from the infected population compartment
| to the susceptible compartment S, and that the infected
population compartment is removed R at rate pu.

s _ 3 ar _ st R _
at N dr N HD ac M

N is population size. During the initial phase: S~ N > I, so
S/N =~ 1. So, differential equation reduces to

% = (A — )1, solved by I(t) = lpe®* M),



Discrete SIR model

Dataset discrete in time (At = 1 day) == solve equations in
discrete time step (d//dt ~ Al/At)

St-1

St — Stfl = —AAt N It,]_ = — I?ew
Rt — Rt_]_ = /,LAt/t_l = R?ew
Si
Iy — g = ()\ ;vl ~ ,u)Atlt_l — [PeW _ Rpew

I: models the number of all (currently) active infected people.

17" is the number of new infections that will eventually be reported.



Add change points in spreading rate

» Assume the spreading rate \;, i = 1,...,n, may change at
certain time points t; from \;_1 to A;.

» Assume change happens linearly over time window of At days.

» Thereby, we account for mitigation measures, which were
implemented by governments step by step.

» The parameters t;, At;, and A; are added to the parameter set
of the model above.

» Differential equations are augmented by the time-varying ;.



Add reporting delay and weekly reporting modulation

> We explicitly include a reporting delay D between new
infections /7*" and newly reported cases C;.

» We also include a weekly modulation to account for lower case
reports around the weekend, which subsequently accumulate
during the week.

» To model these, we put

Ce= 1725 (1~ £(t)), where

()= (1~ f) (1 [sin (Tt - %(DW)D.

» Parameters f,, and ®,, are also constrained by data.



Estimating model parameters

Denote by C; the real-word data of reported cases.
> For likelihood P(C; | 0), assume the distribution

P(Ce | 0) ~ Student T, (mean = C,(9),

width = o/ Ct(H)).

» The scale factor o is another parameter to be estimated.

» Student’s t distribution because it resembles normal
distribution around the mean but features heavy tails, which

make the sampling more robust with respect to extreme values
and thus reporting noise.



Estimating model parameters

Summing up, the complete set of model parameters is

0 = {Ai, ti, Ati, 1, D, 0, lo, fw, Pw }
We estimate 6 using Bayesian inference.

» The posterior is approximated by normal distributions ignoring
correlations between parameters.

» Informative priors on initial model parameters are chosen where
data allows.

» Uninformative priors otherwise.



Forecasting

» For the forecast, we take all samples from the inference step
and continue time integration according to different forecast
scenarios.

» The overall procedure yields an ensemble of forecasts as
opposed to a single forecast that would be solely based on one
set of (previously optimized) parameters.



Example: Germany

Three change points to the initial spreading rate \g, motivated by
German government interventions.

» The first change point (Ao — A1) expected around 9 March
2020 (t1) as a result of the official recommendations to cancel
large events.

» A second change point (A1 — \2) expected around 16 March
2020 (t2), when schools and many stores were closed.

» A third change point (A2 — A3) is expected around 23 March
2020 (t3), when all nonessential stores were closed and a
contact ban was enacted.

Assume that each set of interventions leads to a reduction by ~50%
of A at a change point.

Assume wide uncertainty of reduction. In principle, even an increase
at the change point would be possible after inference.



Germany: Priors

Exact priors (chosen because reasons) for model parameters are

given below.

Parameter Variable Prior distribution
Change points t Normal(2020/03/09, 3)
t Normal(2020/03/16, 1)
t3 Normal(2020/03/23, 1)
Change duration At; LogNormal[log(3), 0.3]
Spreading rates Ao LogNormal[log(0.4), 0.5]
M LogNormal[log(0.2), 0.5]
Ao LogNormal[log(1/8),0.5]
A3 LogNormal[log(1/16), 0.5]
Recovery rate i LogNormal[log(1/8),0.2]
Reporting delay D LogNormal[log(8), 0.2]
Weekly modulation amplitude liy Beta(mean = 0.7, std = 0.17)
Weekly modulation phase @, VonMises(mean = 0, x = 0.01) (nearly flat)
Initially infected lo HalfCauchy(100)

Scale factor

HaifCauchy(16)



Germany:
A
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Germany: Results
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Bayesian inference of SIR model parameters from daily new cases of COVID-19 enables us to assess
the impact of interventions. In Germany, three interventions (mild social distancing, strong social
distancing, and contact ban) were enacted consecutively (circles). Colored lines depict the inferred models
that include the impact of one, two, or three interventions (red, orange, or green, respectively, with individual
data cutoff) or all available data until 21 April 2020 (blue). Forecasts (dashed lines) show how case numbers
would have developed without the effects of the subsequent change points. Note the delay between intervention and
first possible inference of parameters caused by the reporting delay and the necessary accumulation of evidence
(gray arrows). Shaded areas indicate 50% and 95% Bayesian credible intervals.



Germany: Results
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2. The timing and effectiveness of interventions strongly affect future (green), 5 days later (magenta), or 5 days earlier (gray). (C) Comparison of the
COVID-19 cases. (A) We assume three different scenarios for interventions time span over which interventions ramp up to full effect. For all ramps that are
starting on 16 March 2020: (i, red) no social distancing, (ii, orange) mild social ~ centered around the same day, the resulting case numbers are fairly similar;
distancing, or (iii, green) strict social distancing. (B) Delaying the restrictions has however, a sudden change of the spreading rate can cause a temporary decrease
a major impact on case numbers: strict restrictions starting on 16 March 2020 of daily new cases (although A > p at all times; brown).

Thank you!
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